COST-EFFECTIVENESS ANALYSIS OF RIFAXIMIN-λ ADMINISTRATION FOR THE REDUCTION OF THE OVERT HEPATIC ENCEPHALOPATHY EPISODES IN RECURRENCE IN FRANCE

Anastasiia Kabeshova¹, Ph.D.; Soumaia Ben Hariz¹, MS; Elyonore Tsakeu¹, MS; Robert Benamouzig², MD; Robert Launois¹, Ph.D.

1: Network for Evaluation in Health Economics, REES France, Paris, France 2: Gastroenterology Department, Avicenne Hospital, Bobigny, France

Abstract

OBJECTIVES: Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome that occurs most often in a context of acute or chronic liver disease. Rifaximin- α is the first treatment that has been clinically developed for overt HE (OHE) episodes. The objective of the current study was to estimate the long-term cost-effectiveness of rifaximin-α used in combination with lactulose compared to lactulose in cirrhotic patients, who have experienced at least two prior OHE events.

METHODS: A Markov model was used to determine whether rifaximin- α is a costeffective therapy for the prevention of OHE taking a collective perspective as recommended by French HTA guidelines. The transition between health states was based on the analysis of the rifaximin- α pivotal clinical trials.

RESULTS: The results indicate that rifaximin- α is a cost-effective treatment option with an incremental cost per QALY gained of €19 187 and €18 517 over two different time horizons (2 and 5 years). The robustness of the model was studied using the one-way and the probabilistic sensitivity analysis. The results of the Monte Carlo simulations showed that the mean ICER is equal to €13 507 (CI: [€8] 887 – €21 733]). The analysis indicates a 99.8% probability that the ICER would be less than €27 000/QALY.

CONCLUSIONS: For the societal willingness to pay threshold of €27 000 per QALY gained, rifaximin- α in combination with lactulose is a cost-effective and affordable treatment for patients who have experienced at least two prior overt HE episodes.

Methods

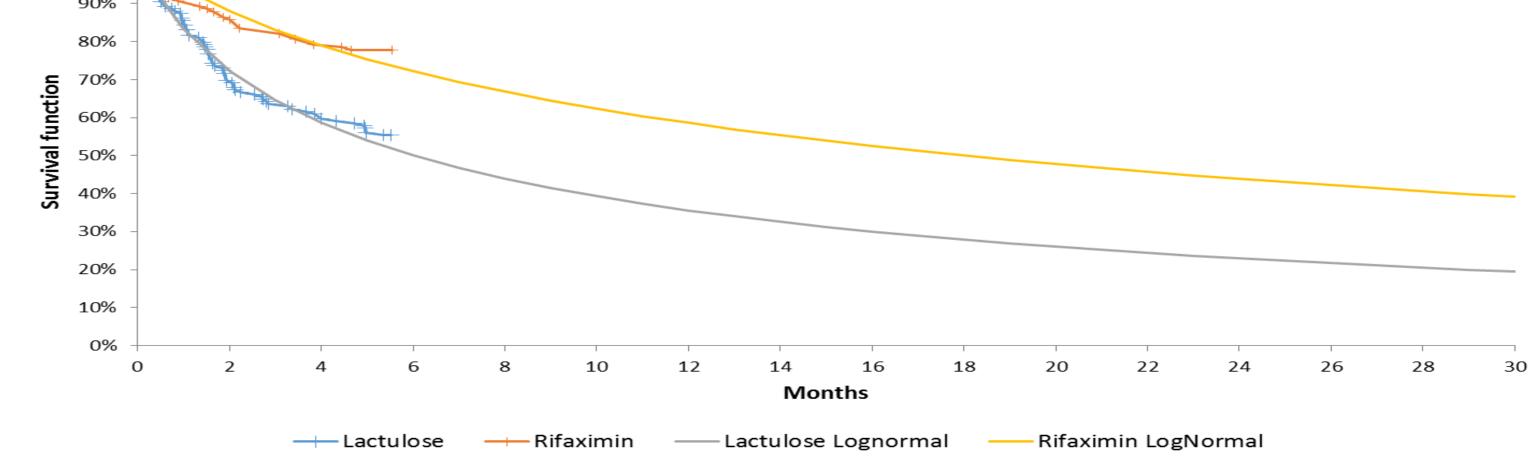
Study carried out at the **University Hospital of Toulouse**:

- observational, retrospective, single-centre; including 62 patients; followed between July 2010 and September 2013. Pivotal clinical study **RFHE3001**:
- adults > 18 years old in remission from previous episodes of

•	hepatic cirrhosis (eque was 62.4 years.	•	OHE 1	3	
Model structure :				7	
 Covert states in the 	model (CHE1, CHE2) a	are defined as being	g \ \frac{1}{5}	Deat	
equivalent to a Conn s	core of 0 or 1.				
 Breakthrough episodes of overt hepatic encephalopathy (OHE1, 					
OHE2) were defined based on a pivotal study as an increase from					
either a baseline Conn	score of 0 or 1 to a sco	ore of $\geqslant 2$.	9 16		
Two different time: 2 and 5 years.					
A cycle length of 1 month (defined as 30.4 days).					
Costs were based on current French treatment practices.					
				rvival function 60% -	
Parametric distribution	Log-Likelihood	AIC	BIC	2 40%	

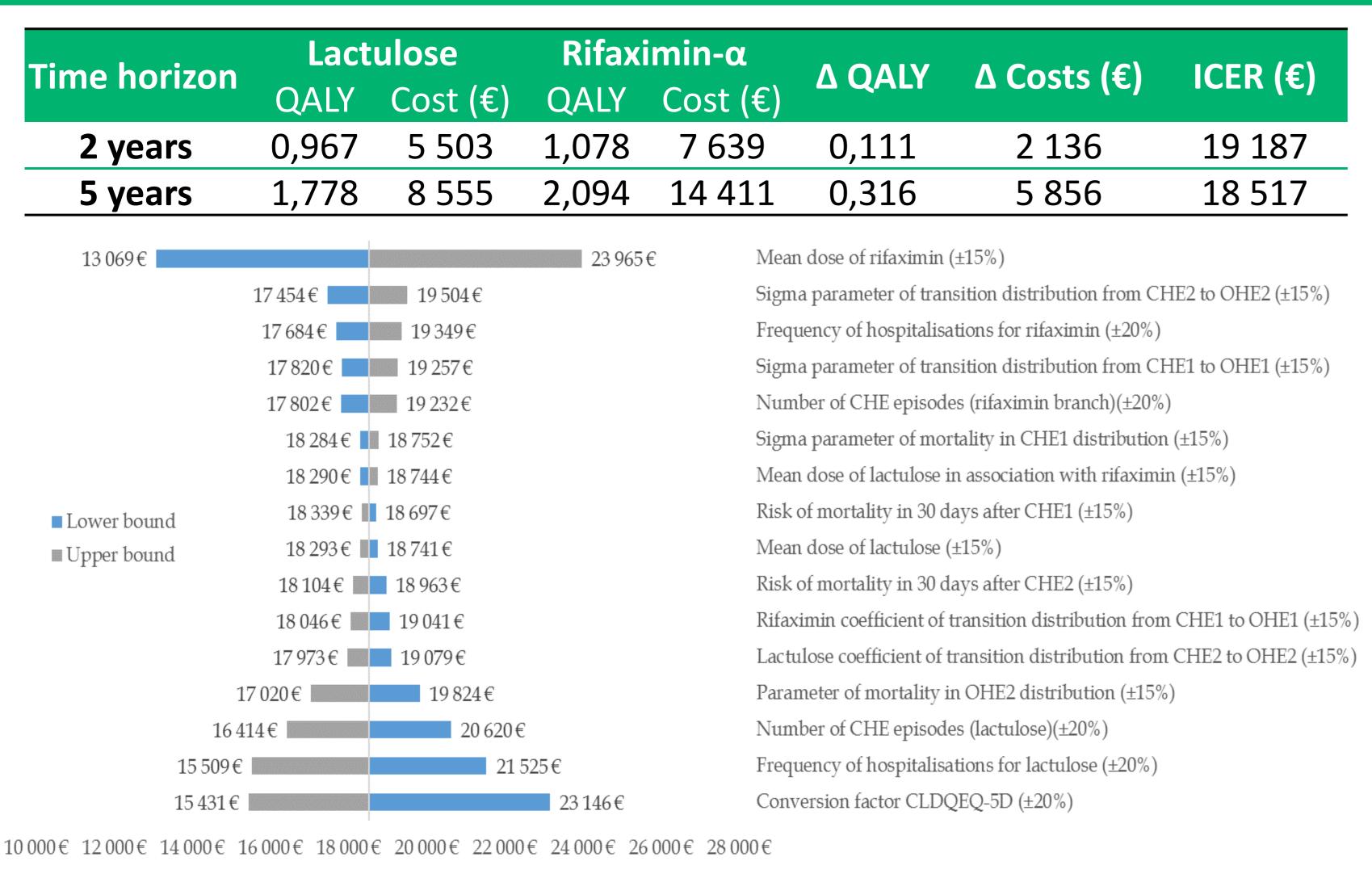
Start

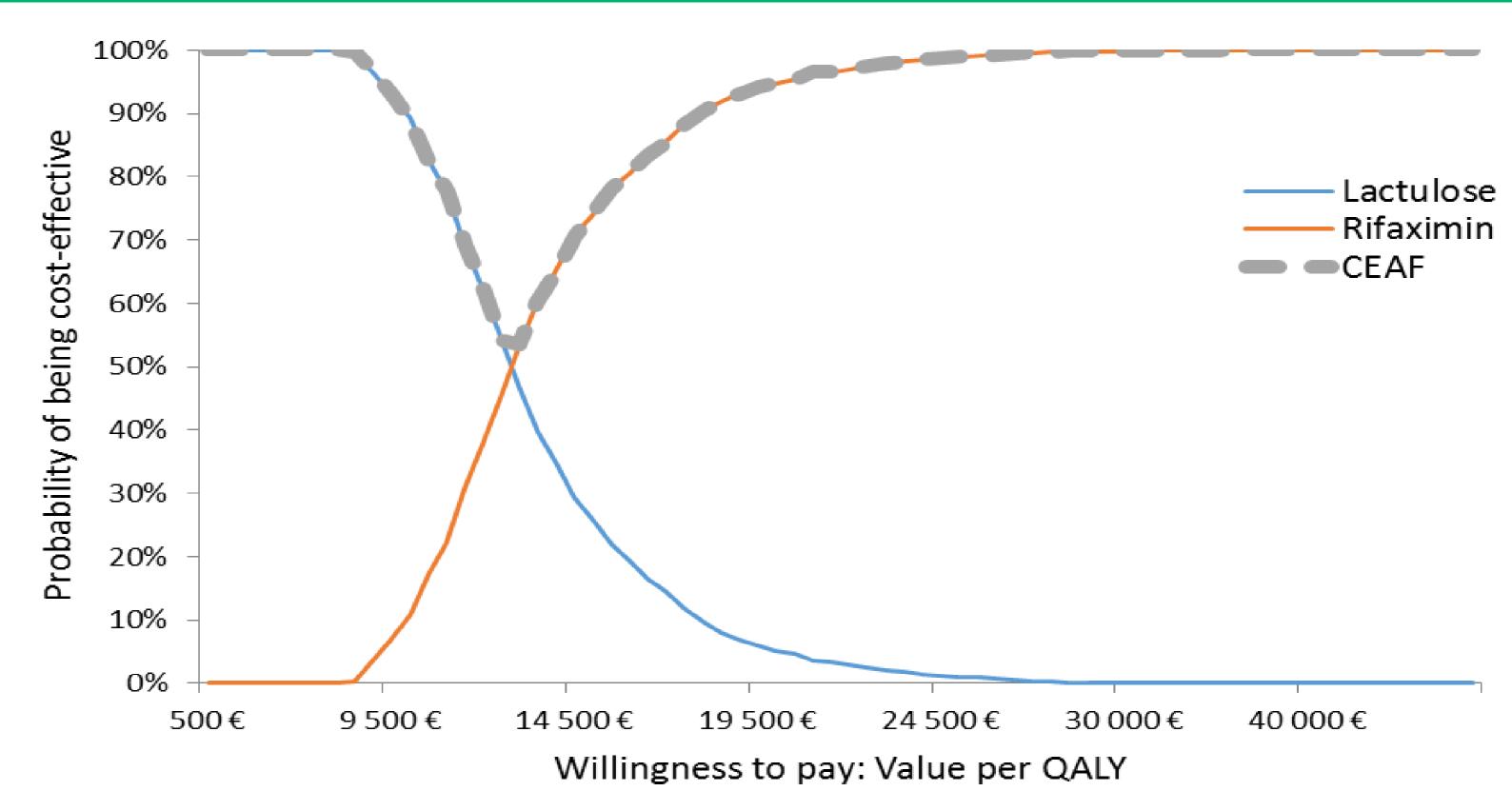
Parametric distribution	Log-Likelihood	AIC	BIC
Exponential	-758,56	1519,11	1522,84
Weibull	-755 <i>,</i> 58	1513,16	1516,89
Gompertz	-749,02	1500,05	1503,78
Log-Normal	-748,68	1499,36	1503,09
Log-Logistic	-752,93	1507,87	1511,60
Model fit statistics for five alterna	ntivo candidato naramotrio d	curvival distributions of	time to first


iviodel fit statistics for five alternative candidate parametric survival distributions of time to first breakthrough overt episode (RFHE3001)

Kaplan-Meier survival curves of time to breakthrough OHE events were published by Bass. Parametric survival modelling allowed to extrapolate a survival curve beyond the 6-month timeframe of the study using 5 alternative parametric survival distributions.

The estimated distribution parameters are used to measure the time-dependency transition probabilities, according to the following formula:


$$tp(t_u) = 1 - \exp\{H(t - u) - H(t)\}$$


where u is the Markov cycle; t_u indicates that t is calculated as integer multiples of the cycle length of the model; H(t) is a cumulative hazard function for lognormal distribution.

Comparison of original Kaplan–Meier plot and corresponding best-fit parametric survival function (lognormal) for time to first overt HE event (by treatment arm in the RFHE3001 study)

Results

Probabilistic sensitivity analysis showed that mean ICER = €13,507 (95% CI [8,887– 21,733]). CEACs represent the quantification of the uncertainty around the expected cost effectiveness that is plotted with the probability that the expected NMB is positive over a range of values on the vertical axis and WTP/cost effectiveness threshold (λ) on the horizontal axis. Switch point = 12,985.

Conclusion

In conclusion, this analysis reveals that in France for patients with recurrent HE in the context of liver cirrhosis rifaximin- α reduces episodes of OHE. Rifaximin- α in association with lactulose improves the quality of life and reduces expenditure for the French healthcare system. In other words rifaximin- α is a cost-effective treatment strategy when compared with lactulose monotherapy. Indeed, at a threshold of €27,000, the probability that rifaximin- α would be considered cost-effective is 99.8%. The uncertainty intervals and CEACs enable decision-makers to appraise the results based on their risk aversion.

References

- Bass, N.M., Mullen, K.D., Sanyal, A., et al. (2010) Rifaximin Treatment in Hepatic Encephalopathy. New England Journal of Medicine 362(12): 1071–1081.
- Briggs, A., Sculpher, M. and Claxton, K. (2006) Decision Modelling for Health Economic Evaluation. 1 edition. OUP Oxford.
- Latimer, N.R. (2013) Survival analysis for economic evaluations alongside clinical trials-extrapolation with patient-level data: inconsistencies, limitations, and a practical guide. Medical Decision Making 33(6): 743–54.

28, rue d'Assas – 75006 Paris France; Tel: +33 1 44 39 16 90

E-mail: launois.reesfrance@wanadoo.fr Web: www.rees-france.com