Les Événement de l'Année en Économie Médicale 2012 Séminaire JEM SFES: Introduction aux Outils Statistiques Bayésiens Paris, 26 janvier 2012

Pourquoi Bayes?

Applications dans les modèles d'évaluation économique R.Launois¹, Le Moine JG¹, Huynh MT¹,

1 REES France, Paris, France

Quantifier l'Incertitude

Incertitude et Médecine

- L'incertitude est **consubstantielle** à l'activité médicale. Quand un médecin prend une décision c'est toujours dans l'angoisse de prendre la mauvaise
- Les analyses économiques sont entachées de la même caractéristique à la fois sur l'estimation de l'efficacité, des coûts et des conséquences de la pathologie
- Le fait qu'on soit dans l'incertitude doit inciter à se poser des questions : « What if ? » : Qu'est ce qu'il se passerait si ?.
- L'analyse de sensibilité a pour but d'évaluer la stabilité des conclusions d'une analyse par rapport aux hypothèses émises
- Il y plusieurs manières de la faire

Analyse De Sensibilité Classique

▼ Modalités

- Analyse uni,bi ou tri-dimensionnelles
- Jeu limité de scénarios
- Chaîne de corrélations entre variables
- Recherche des seuils de renversement des choix

X Limites :

- On suppose que les autres paramètres demeurent constants
- Ne permet pas d'explorer les variations conjointes de tous les paramètres.(pas plus de 3 paramètres en même temps)
- Certaines valeurs pour une variable sont plus probables que d'autres
- → Le traitement de l'incertitude exige un regard nouveau

Analyse de Sensibilité Probabiliste

- ➤ But: Estimer l'intervalle de confiance du ratio coût efficacité Théorème de la limite centrale: ΔC, ΔE → Loi Normale. Ratio de 2 lois normales RDCE = ΔC / ΔE ≠ loi normale.
- ➤ Problème 1 : Comment peut on avoir confiance dans une statistique sans intervalle de confiance ?
- ➤ Problème 2 : Le ratio coût efficacité est discontinu au voisinage de 0
- Solution : raisonner en termes de Bénéfice Additionnel Net de Santé : BANS

3 Méthodes

- ➤ Monte Carlo : obtenir la distribution d'échantillonnage à partir de la distribution a priori des paramètres du modèle: analyse de sensibilité paramétrique.
- Bootstrap : obtenir la distribution d'échantillonnage à partir de la distribution empirique des observations par tirage au sort avec remise: analyse de sensibilité non paramétrique
- ➤ Distribution a posteriori Bayésienne. On choisit une distribution a priori des paramètres pour représenter l'incertitude de la moyenne dans la population et sa variabilité et on actualise l'information, par apport de données nouvelles. À la sortie on a une distribution de valeur.

Application des Lois de Probabilité : Le Paradigme Bayésien

- ➤ Exemple : test de dépistage
 - Dans une population donnée, la prévalence d'une maladie M est de 0,10 la cote a priori d'être malade est égale 0,10/0,90 soit 1 chance d'être malade contre 9 de pas l'être
 - Il existe un test de dépistage détectant 96 % des patients vraiment malades (Se) et 2% des patients en bonne santé mais faussement positifs (Sp=98 %)(1-Sp=2)
 - Une personne est dépistée pour le test. A combien peuton parier qu'elle soit réellement malade?

R.p.Bayes : L'Actualisation des Connaissances à la Lumière des Observations

- ➤ Pari (cote) a priori d'avoir la maladie : 1/9=0,11 le sujet a une chance d'avoir la maladie contre neuf de ne pas l'avoir
- ➤ Rapport de vraisemblance : 0,96/0,02 = 48 un individu ayant un test + a 48 fois plus de risque d'être malade qu'un individu sain avec un R+
- ➤ Pari (cote) a posteriori : 0,11 * 48 = 5,28 Un individu ayant un test + a 5,28 fois plus de chance d'être malade que de pas l'être

Théorème De Bayes: Ce Qu'il Faut Retenir

➤ La distribution a posteriori est un **compromis** entre la distribution a priori et la fonction de vraisemblance

distribution a posteriori ∞ distribution a priori * fonction de vraisemblance

➤ La statistique bayésienne prend en compte les *informations apportées par l'échantillon* (approche classique) *mais également toute autre information* que l'on pourrait avoir a priori sur un paramètre.

Combiner Inférence Statistique Bayésienne et Approche Décisionnelle

- Toute inférence statistique se fonde sur la détermination de 3 facteurs :
 - 1. La distribution *a priori* des paramètres $\pi(\theta)$;
 - 2. La famille des *lois des observations* $f(x/\theta)$;
 - 3. Les conséquences dommageables ou bénéfiques associées aux décisions L(d, θ), U(d, θ).
- Soit l'espace de référence des décisions possibles. On appelle coût, la fonction L(d, θ) qui évalue les «conséquences dommageables» résultant du choix de la décision d quand le paramètre est θ.
- A l'opposé,on appelle utilité la fonction U(d,θ), bien connue des économistes : qui évalue les « conséquences bénéfiques» résultant du choix d quand le paramètre est

Maximiser l'Intérêt de Santé Publique

➤ le bénéfice net de santé (BNS) d'une intervention est égale à l' utilité des bénéfices thérapeutiques qui lui sont associés, monétarisée sur la base des Efforts Financiers considérés comme Socialement Acceptables par la collectivité V_{EFSA}, moins le coût des moyens qui doivent être mis en œuvre pour les obtenir

BNS₁=
$$V_{EFSA} E_1 - C_1$$
 BNS₂= $V_{EFSA} E_2 - C_2$ [V_{EFSA} = la valeur tutélaire de l'unité de résultat]

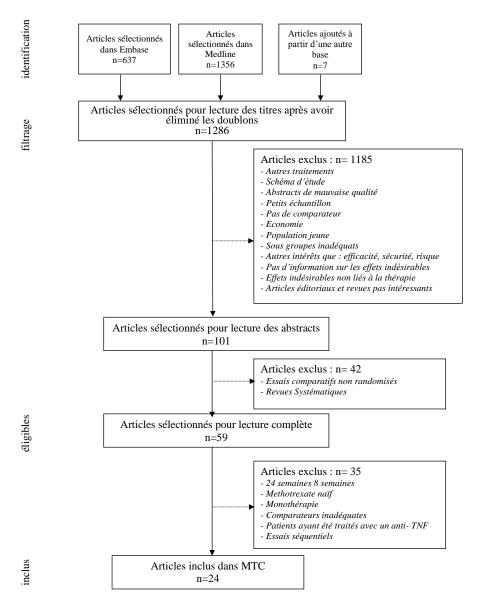
▼ le bénéfice additionnel net de santé (BANS) d'un programme par rapport à un autre est égal à la différence entre l'utilité du surcroît de santé redonnée V_{EFSA} *ΔE valorisée sur la base des efforts financiers considérés comme acceptables par la collectivité V_{EFSA} et le montant supplémentaire des dépenses [ΔC] qui doivent être engagées, pour en assurer la mise en place

x règle de décision : si BANS = > 0 le bilan de l'innovation est positif en termes de santé publique ; si BANS <0 il ne l'est pas, et le projet doit être écarté ;

Briggs A. Smdm 2002 :22:298¹³08

Briggs A. Smdm 2002 :22:298¹³08

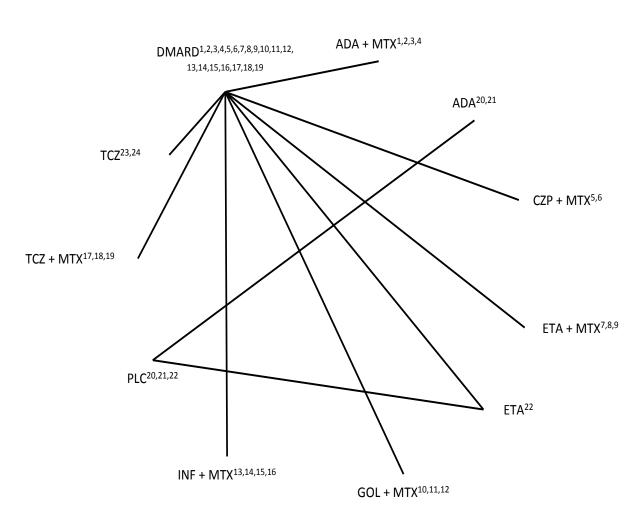
Briggs A. Smdm 2002 :22:298¹³08


■ Comparison

Briggs A. Smdm 2002 :22:298 1308

■ Briggs A. Smdm 200

Etude de cas : comparaisons multitraitement dans la Polyarthrite rhumatoïde

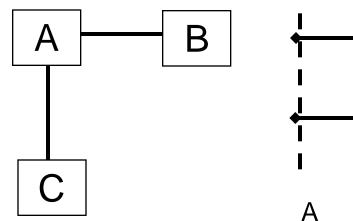

Diagramme de Flux de Sélection des Essais

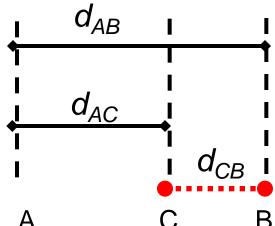
Population et Réseau de Preuves

	Etudes	N patients
1	Furst 03 (STAR)	636
2	Keystone 04 (DE019)	407
3	Kim 07	128
4	Weinblatt 03 (ARMADA)	129
5	Keystone 08 (RAPID1)	592
6	Smollen 09 (RAPID2)	373
7	Combe 06	254
8	Klareskog 04 (TEMPO)	682
9	Weinblatt 99	89
10	Kay 08	70
11	Keystone 09 (GO-FORWARD)	222
12	Kremer 10	258
13	Maini 99 (ATTRACT)	174
14	Schiff 08 (ATTEST)	275
15	Westhoven 06 (START)	723
16	Zhang 06	173
17	Genovese 08 (TOWARD)	1 216
18	Maini 06 (CHARISMA)	151
19	Smolen 08 (OPTION)	409
20	Miyasaka 08 (CHANGE)	178
21	Van de Putte 04	223
22	Moreland 99	158
23	Nishimoto 2007 (SAMURAI)	306
24	Nishimoto 2008 (SATORI)	127
	TOTAL	7 953

Le réseau permet d'identifier les essais qui ont en commun un même comparateur et de vérifier le caractère connecté ou non du faisceau de preuves

14


Taux de Réponse ACR 50 des Essais


Auteur, Date, Essais	Bras	Effectif	# de R+	Taux de réponse	Auteur, Date, Essais	Bras	Effectif	#de R+	Taux de réponse
Furst 2003, STAR	ADA + DMARD	318	92	29%	Keystone 2009, GO-FORWARD	GOL + DMARD	89	33	37%
	Pb + DMARD	318	36	11%		Pb + DMARD	133	18	14%
Keystone 2004, DE019	ADA + DMARD	207	81	39%	Kremer 2010	GOL + DMARD	129	24	19%
	Pb + DMARD	200	19	10%		Pb + DMARD	129	12	9%
Kim 2007	ADA + DMARD	65	28	43%	Maini 1999, ATTRACT	INF + DMARD	86	22	26%
	Pb + DMARD	63	9	14%		Pb + DMARD	88	4	5%
Miyasaka 2008, CHANGE	ADA	91	22	24%	Schiff 2008, ATTEST	INF + DMARD	165	61	37%
	Pb	87	5	6%		Pb + DMARD	110	22	20%
van de Putte 2004	ADA	113	25	22%	Westhovens 2006	INF + DMARD	360	110	31%
	Pb	110	9	8%		Pb + DMARD	363	33	9%
Keystone 2008, RAPID 1	CZP + DMARD	393	146	37%	Zhang 2006	INF + DMARD	87	38	44%
	Pb + DMARD	199	15	8%		Pb + DMARD	86	22 —	26%
Smolen 2009, RAPID 2	CZP + DMARD	246	80	33%	Genovese 2008, TOWARD	TCZ + DMARD	803	302	38%
	Pb + DMARD	127	4	3%		Pb + DMARD	413	37	9%
Combe, 2006	ETA + DMARD	101	53	52%	Maini 2006, CHARISMA	TCZ + DMARD	50	27	54%
	ETA	103	48	47%		TCZ	52	21	40%
	Pb + DMARD	50	7	14%		Pb + DMARD	49	14	29%
Weinblatt 1999	ETA + DMARD	59	23	39%	Nishimoto 2007, SAMURAI	TCZ	158	90	57%
	Pb + DMARD	30	1	3%		Pb + DMARD	148	26	18%
Moreland 1999	ETA	78	31	40%	Nishimoto 2009, SATORI	TCZ	61	33	54%
	Pb	80	4	5%		Pb + DMARD	66	11	17%
Kay 2008	GOL + DMARD	35	13	37%	Smolen 2008, OPTION	TCZ + DMARD	205	90	44%
	Pb + DMARD	35	2	6%		Pb + DMARD	204	22	11%

Sélection du Comparateur de Référence

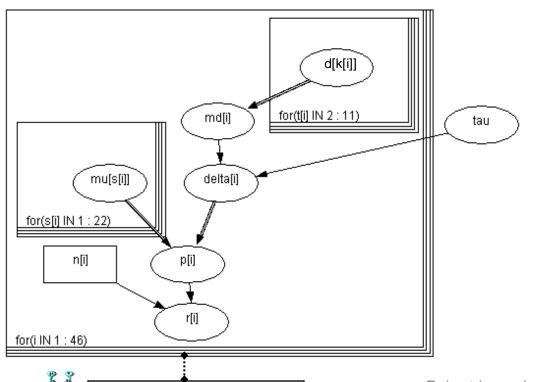
On recherche l'efficacité relative de B par rapport à C en l'absence d'essai les comparant en tête à tête. On peut les comparer indirectement en rapportant B et C à un comparateur pivot A par ex : B p/r à A , C p/r à A (le comparateur de référence est indicé en premier dans l'identification de l'odd ratio)

OR[CB] = [odds B/ odds A] / [odds C/ odds A] OR[CB] = OR[AB] / OR[AC] Log OR[CB]) = Log OR [AB] - Log OR [AC] $d_{CB} = d_{AB} - d_{AC}$

Modèle à Effet Fixe

- ➤ Nombre de succès *r.* L'indice s[i] k identifie l'essai, k le bras de traitement anti TNF :
 - $-r_{s[i]k} \sim Bin(p_{s[i]k}, n_{s[i]k})$
- ➤ Pour chaque essai s[i] k comparant le traitement k au traitement b du groupe contrôle : logit(p s[i] k) =
 - $\mu_{s[i]}$ + si k = b
 - $\mu_{s[i]}$ + d_{bk} si k \neq b
- d_{bk} la quantité d'effet mesurée en log OR. d_{bk} n'est pas indicé en fonction de l'essai, on le postule égal pour tous les essais.
- Comparateur commun : Traitement A. Effets estimés : log OR d_{Ak}. Pour chaque essai comparant le traitement k au traitement b du bras contrôle on a :
 - $logit(p_{s[i]k}) = \mu_{s[i]} + d_{bk} = \mu_{s[i]} + d_{Ak} d_{Ab}$

Modèle à Effets Aléatoires

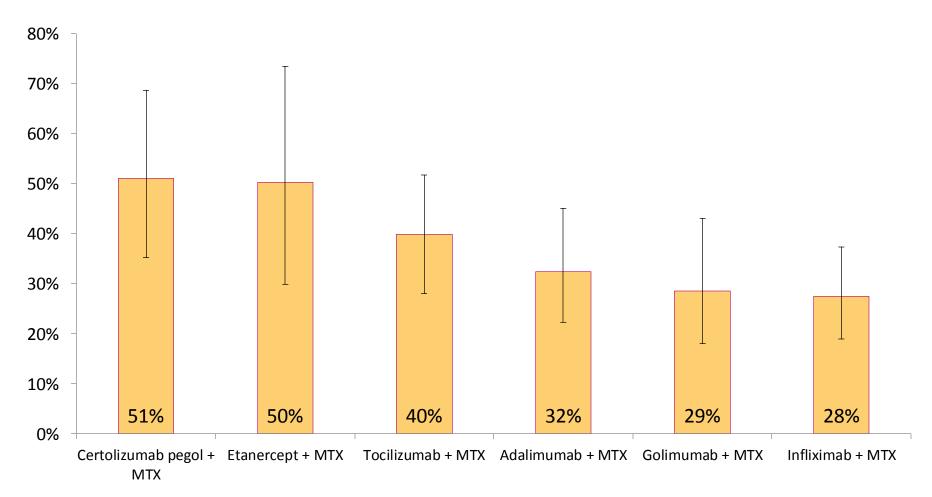

- ▼ Il reprend le modèle précédent (effets fixes) :
 - $r_{s[i]k} \sim Bin(p_{s[i]k}, n_{s[i]k}).$
 - logit(p s[i] D)= $\mu s[i]$ (DMARD classique)
 - $\operatorname{logit}(p_{s[i]T}) = \mu_{s[i]} + \delta_{s[i]k}$
- ➤ L'efficacité relative δ est maintenant indicé par étude s[i]: on admet que la quantité d'effet du traitement k mesurée en log OR puisse être différent entre les essais.
- Les effets spécifiques aux essais ont une distribution commune : $\delta_{\text{sijk}} \sim \text{Norm}(\text{md}, \sigma^2)$.
 - md est l'effet du traitement dans la population,
 - σ² la variance inter-étude de cet effet. Plus σ est élevé,
 plus l'hétérogénéité entre les études est grande.

Modèle MCT Nombre de Réponse ACR50 Graphe Orienté Acyclique [DAG directed acyclic graph]

- Le raisonnement inductif de l'Inférence Statistique, consiste à parcourir le graphe dans le sens inverse des flèches. Il s'agit de partir des données et de faire remonter l'information vers les paramètres
- Le raisonnement déductif de la Modélisation parcourt le graphe dans le sens des flèches, Il s'agit de descendre des paramètres vers les données
- Les variables aléatoires sont représentées sous la forme d'ellipses, une distribution de probabilité leur est associée
- Les données apparaissent dans un carré ou un rectangle.
- flèches simples : relations stochastiques conditionnelles ;
- flèches doubles : relations logiques déterministes.
- L'empilement des feuilles symbolise le nombre d'itérations.

Raisonnement inductif

Les variables indépendantes (les paramètres) sont à l'extérieur du cadre

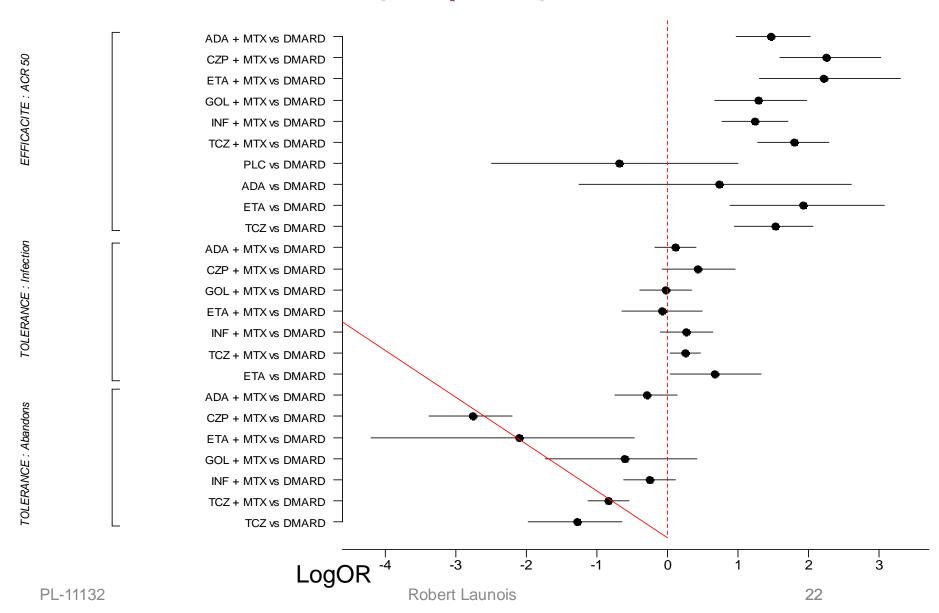

Indices

- X: i : bras 46, s[i] : études 22, k[i] : traitements 7+3+Pb
- ▼r [i] : nombre de répondeurs ;
- ×p[i] : probabilité de réponse ;
- ▼n[i] : effectif ;
- mu[s[i]] : le log de la cote (logOdds) pour chaque étude:
- delta [i] : log du rapport de cotes (logOddsRatio);
- md [i]: moyenne « vraie » de la distribution dans la population de l'effet relatif du ttx k du bras[i] par rapport au ttx de référence, mesuré en log du rapport de cotes (logOR)
- ★d[k[i]]: distribution dans la population de l'effet relatif du ttx k du bras [i] par rapport a un ttx de référence mesuré en log du rapport de cotes (logOR) = une différence de log de cote,
- tau : la précision du logOR.

Paramètres Estimés

- ➤ Efficacité des traitements: (moyenne, écart-type, intervalle de crédibilité à 95%):
 - Les taux absolus de réponse ACR50 de chaque ttx k [T_k] qui tient compte de la valeur moyenne que prend ce critère de jugement dans les bras contrôle des essais sur le traitement k : (i.e.le SMR).
 - L'efficacité relative des ttx k mesurée en log ORs [d_k] par rapport à un comparateur pivot: «le numéraire » (i.e.l' ASMR).
 - les ORs des traitements les uns par rapport aux autres : or [,].
- **X** Classement des traitements :
 - Probabilité pour chaque traitement k d'être le traitement le plus efficace par rapport à l'ensemble des traitements disponibles: best [,] ou d'être plus efficace qu'un autre traitement: psup [,].

Paramètres d'Efficacité MCT: Taux de Réponse Absolue ACR 50 à 24s



MCT: Efficacité et Sécurité Relatives Estimées24s

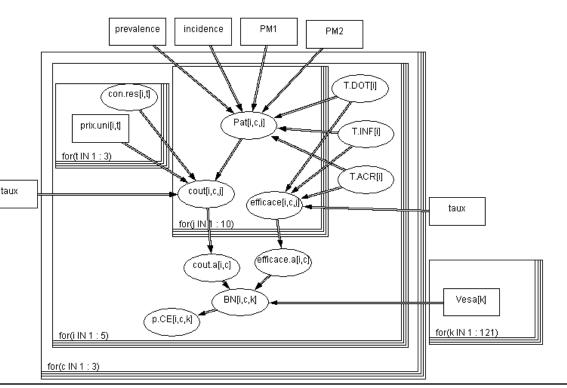
[Sans Tempo et Armada]

Recap MCT : Efficacité Clinique et Tolérance des Thérapies Ciblées

	ACR 50	Infections	Arrêt de traitement	Taux de maintien ttx	Référence
Adalimumab + MTX	32,40% [22%;45%]	38,10% [31%;45%]	16,10% [11%;23%]	16,83% [11%;24%]	1,2,3
Certolizumab pegol + MTX	51,11% [35%;69%]	45,70% [34%;58%]	1,60% [1%;3%]	27,31% [17%;39%]	4,5
Etanercept + MTX	50,32% [30%;73%]	33,80% [23%;46%]	3,10% [0%;13%]	32,28% [18%;48%]	6,7
Golimumab + MTX	28,54% [18%;43%]	34,90% [27%;43%]	12,40% [5%;27%]	16,28% [10%;25%]	8,9,10
Infliximab + MTX	27,48% [19%;37%]	41,80% [33%;51%]	16,8% [12%;22%]	13,31% [9%;19%]	11,12,13,14
Tocilizumab + MTX	39,93% [28%;52%]	41,40% [36%;47%]	10,1% [8%;13%]	21,03% [15%;28%]	15,16,17

 $^{^{1}}$ Furst₀₃; 2 Keystone₀₄; 3 Kim₀₇; 4 Keystone₀₈; 5 Smolen₀₉; 6 Combe₀₆; 7 Weinblatt₉₉; 8 Kay₀₈; 9 Keystone₀₉; 10 Kremer₁₀; 11 Maini₉₉; 12 Schiff₀₈; 13 Westhoven₀₆; 14 Zhang₀₆; 15 Genovese₀₈; 16 Maini₉₆; 17 Smolen₀₈

Modèle de décision Intégré Combinant MCT et ACE


Descriptif du Modèle de Simulation

- ➤ **Population cible :** cas **prévalents** de PR ayant eu une réponse inadéquate à un traitement de fond classique (DMARD)
- **▼ Point de vue :** Système de soins
- Horizon temporel: 5 ans: début 2011 à fin 2015
- Traitements étudiés :
 - 5 anti-TNF α : adalimumab (Humira®), certolizumab pegol (Cimzia®),
 etanercept (Enbrel®), golimumab (Simponi®), et infliximab (Remicade®)
 - 1 anticorps contre le récepteur de (IL6) : tocilizumab (RoActemra®)
- Critères de jugement : ACR 50, abandons de traitement, infections
- **Type de simulation**: MCMC sur **Multicohorte dynamique**
- **▼ Pas de la simulation**: 26 semaines

Modèle Economique Intérêt de Santé Publique

Raisonnement déductif

Les indices

- ▼i: traitement; c: ligne de traitement dont « 3 »: deux lignes confondues; j: cycle; t: type de coût (acquisitions, administration, examens),k: indice de Vesa
- ➤ PM1 et PM2 : parts de marché en 1ère et 2ème lignes de traitement
- ➤ T.DOT [i] : taux d'abandons; T.INF [i] : taux d'infections; T.ACR [i] : taux de réponse ACR50;
- ▼pat[i,c,j] : nombre de patients;
- **▼**con.res [i,t] : consommation de ressources;
- ➤ prix.uni[i,t] : prix unitaire traitement;

- \subset cout[i,c,j] : coût de txt;
- ▼efficac[i,c,j] : taux de maintien sous txt;
- efficace.a[i,c] : taux annuel moyen de maintien sous txt;
- ▼ coût.a[i,c] : coût annuel moyen de txt; BN[i,c,k] : bénéfice collectif net;
- ▼taux: taux d'actualisation; Vesa[k] : valeur de l'effort socialement acceptable;
- ▼p.CE [i,c,k] : probabilité d'être meilleur en termes de santé publique que le ou les comparateurs

Hypothèses du Modèle Coût-Efficacité

- 24 essais 2 (TEMPO et ARMADA) soit 22 ; 11 protocoles ; 7953 patients
- Les résultats du modèle en termes d'efficacité et de coût ont été calculés en 1ère ligne, en 2ème ligne et toutes lignes confondues.
- A 5 ans, le taux de maintien sous traitement est égale par cycle de 6 mois au taux de réponse*(1- taux d'abandons)*(1-taux d'infections), et ceci sur 10 cycles
- Les taux de maintien sous traitement en seconde ligne ont été minorés de 10%
- Le coût et le taux de maintien sous traitement ont été actualisés au taux annuel de 4% (préférence pour le temps présent) (Lebègue 2004)
- Les résultats ont été analysés en termes de rapport coût-efficacité dans le graphique 4 cadrans, en termes d'acceptabilité sociale et d'avantage collectif additionnel net

Données Sources : Coûts d'acquisition des Biothérapies

Traitement	Dosage et fréquence	Nombre de seringues ou de flacons par an	Nombre d'unités par boîtes	Prix fabricant HT de la boite	Coût annuel 1 ^{ère} année
Humira	Une injection de 40 mg toutes les 2 semaines	26	2	924 €	12 014€
Cimzia	Une injection de 400 mg aux semaines s0, s2 et s4, puis une injection de 200 mg toutes les 2 semaines	Initiation : 16 Entretien : 13	2	764 €	(6 112 €) (49 66 €) 11 078 €
Enbrel	Une injection de 50 mg une fois par semaine	52	4	908 €	11 801 €
Simponi	Une injection de 50 mg toutes les 4 semaines	13	1	1 815 €*	23 602 €
Remicade	Perfusion à 4 mg/kg aux semaines s0, s2 et s6, puis toutes les 8 semaines	Initiation : 15 Entretien : 10	1 sachet de 100 mg	483 €	(7 245 €) (4 830 €) 12 075 €
RoActemra	Perfusion à 8 mg/kg toutes les 4 semaines	39	1 flacon de 10 ml	362 €	14 118€
Methotrexate	Une injection de 15 mg par semaine	156	1	1,23 €	192 €

^{*} Coté par assimilation

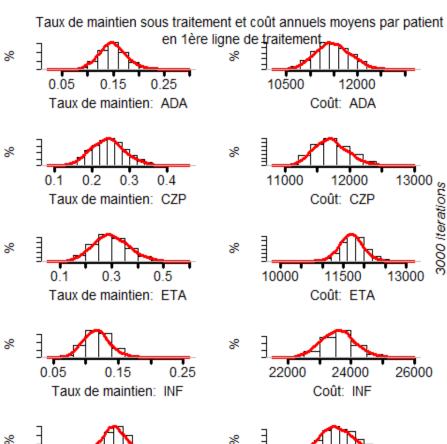
Vignettes de Coûts [€₂₀₁₁]

	Adalimumab	Certolizumab	Etanercept	Golimumab	Infliximab	Tocilizumab
Médicaments ciblés	12 014 €	11 078 €	11 801 €	23 602 €	12 075 €	14 118 €
Hôpital						
Administration	0€	0 €	0 €	0 €	13 500 €	17 500 €
Examens de biologie	300 €	200 €	100 €	200 €	300 €	300 €
Examens de radiologie	0€	0 €	0 €	0 €	0 €	0 €
Consultations externes	100 €	100 €	100 €	100 €	200 €	200 €
Total Hôpital	400 €	300 €	200 €	300 €	14 000 €	18 000 €
Ambulatoire						
Administration	0€	0€	0 €	0 €	0 €	0€
Examens de biologie	400 €	400 €	300 €	400 €	900 €	900 €
Examens de radiologie	0€	0€	0 €	0 €	0 €	0€
Consultations	800 €	700 €	700 €	700 €	700 €	700 €
Total Ambulatoire	1 200 €	1 100 €	1 000 €	1 100 €	1 600 €	1 600 €
Total 12 mois	13 614 €	12 478 €	13 001 €	25 002 €	27 925 €	33 718 €

Coût Global Annuel Moyen Estimé Par Tête et Par Traitement [Base 2011 ETA - 10 %]

Coût Annuel Moyen par Patient et par Traitement en 1ère Ligne




Taux Estimé de Rémission Sous Traitement et Coût Estimé par Patient et par An

Cohorte 2011-2015		
	Moyenne	[IC95%]
Taux de maintien sous traitement *		

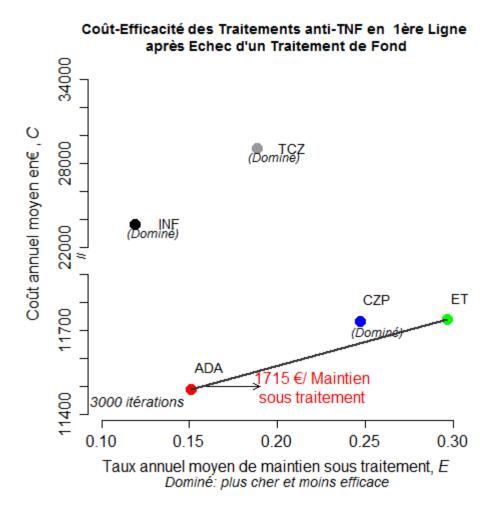
Adaplimumab 0.151 [0,099; 0,212]
Certolizumab pegol 0.247 [0,156; 0,349]
Etanercept 0.298 [0,167; 0,446]
Infliximab 0.119 [0,079; 0,167]
Tolicizumab 0.188 [0,129; 0,249]

^{*} Valeur actualisée au taux de 4%

30500

0.15

Taux de maintien: TCZ


0.25

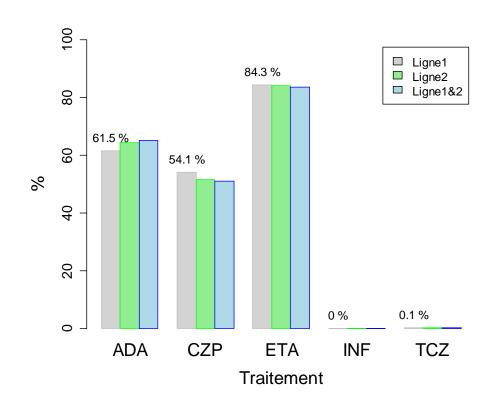
29000 Coût: TCZ

27500

Plan CE et Frontière d'Efficience

- Adalimumab et etanercept forment la frontière d'efficience
- Certolizumab pegol, infliximab et tocilizumab sont fortement dominés
- Le coût additionnel annuel par rapport à adalimunab d'un maintien en rémission plus long sous etanercept est de 1715€ en moyenne

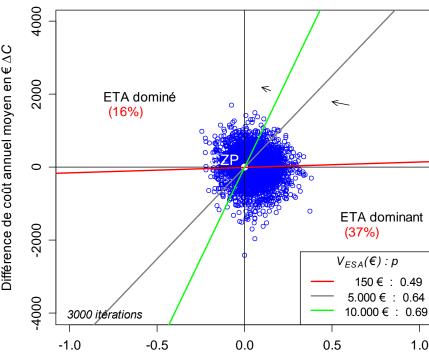
CZP, INF, TCZ Sont Plus Onéreux et Moins Efficaces



Pourcentage des Simulations Appartenant à la Frontière d'Efficience

- Le pourcentage de 3000 simulations pour lesquels chacun des traitements est situé sur la frontière d'efficience
- INF et TCZ n'appartiennent pas à cette frontière

Pourcentage par traitement des 3000 simulations située sur la frontière d'efficience



Plan CE et Volonté de Payer

Etanercept (ETA) vs. Certolizimab (CZP)

- ➤ Dans 37% des simulations, etanercept domine certolizumab pegol. Il est dominé dans 16% des cas.
- ➤ Pour une valeur donnée de l'effort socialement acceptable (V_{ESA}) égale à 150€, la probabilité que etanercept soit plus efficient que certolizumab pegol est de 0,5.
- Lorsque que la V_{ESA} est estimée à 5000€, cette probabilité est de 0,64.

Plan Coût-Efficacité
Ligne1: Etanercept vs. Certolizumab

Différence de taux annuel moyen de maintien sous traitement, ΔE p: Probabilité d'être efficient pour une valeur donnée de V_{ESA} V_{ESA} : Valeur de l'Effort Socialement Acceptable


Courbe d'Acceptabilité Sociale

Comparaisons par Paire:

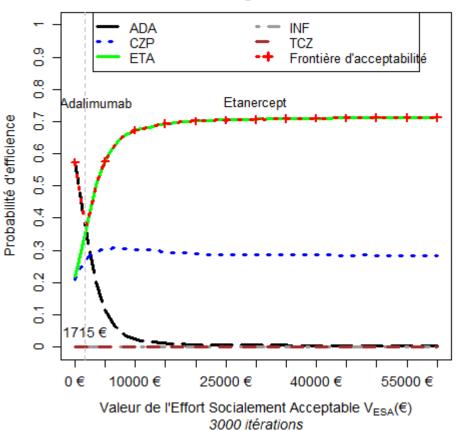
Dès que V_{ESA} >150€, la probabilité pour etanercept d'être efficient est supérieure à 0,5.

- Lorsque que la V_{ESA} est estimée à 5000€, cette probabilité est de 0,65.
- Si V_{ESA} >5000€ alors cette probabilité est proche de 0,7.

Courbe d'Efficience Socialement Acceptable, CESA Ligne 1 : Etanercept vs. Certolizumab

Valeur de l'Effort Socialement Acceptable, V_{ESA}(€)

3000 itérations

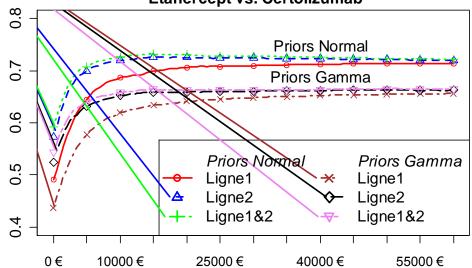


Frontière d'Acceptabilité Sociale

Comparaison Multitraitements

- Adalimumab et etanercept sont situés sur la frontière d'acceptabilité sociale.
- Adalimumab représente le traitement le moins couteux, etanercept représente le traitement le plus efficace.

Frontière d'Acceptabilité Sociale, FAS Ligne 1



Analyse de sensibilité: Prior Normal vs. Prior Gamma Ligne1, Ligne2, Ligne1&2

Courbe d'Efficience Socialement Acceptable, CESA en Fonction de la Ligne de Traitement et du Choix du Prior Etanercept vs. Certolizumab

- Les résultats ne sont pas différents entre les lignes de traitements et entre deux types des priors de consommations des ressources: Normal vs Gamma
- ETA a toujours plus de chance d'être plus efficient par rapport à CZP
- Les différences observées peuvent être expliquées par des consommations des ressources plus importantes sous le modèle Gamma

Valeur de l'Effort Socialement Acceptable, V_{ESA}(€) 3000 itérations

V_{ESA}	Priors Normal Ligne1 Ligne2 Ligne1&2 L		Priors Gamma Ligne1 Ligne2 Ligne1			
0	0.49	0.57	0.59	0.44	0.52	0.54
5000	0.64	0.7	0.71	0.58	0.63	0.64
10000	0.69	0.72	0.73	0.62	0.65	0.66

Sélection Bibliographique

- **Ades AE, Welton N, Lu G. Introduction to mixed treatment comparisons. MRC Health Services Research Collaboration 2006
 - Ades AE. A chain of evidence with mixed comparisons: models for multi-parameter synthesis and consistency of evidence. Stat Med 2003;22:2995–3016
 - Ades AE, Claxton K, Sculpher M. Evidence synthesis, parameter correlation and probabilistic sensitivity analysis. MRC Health Service Collaboration 2004
 - ++ Annemans L. Budget impact analysis in Pharmaco-economics : from theory to practice. Drug Discovery Series. CRC Press 264 Pages. Edited By: R. J.
 - G. Arnold. Arnold Consultancy & Technology LLC, New York, USA 2009.
 - Bernier J., Parent E., Boreux JJ., Statistiques pour l'envirronnement traitement bayesien de l'incertitude.Edition Tec &Dos. Paris 2000
 - Briggs A, Sculpher M, Claxton K, Decision modelling for health economic evaluation. Handbook in health economic evaluation series. Oxford University press, 2006, 237 pages
 - ++ Briggs A, Goeree R, Blachouse G, O'Brien B. Probabilistic Analysis of Cost Effectiveness Models: Choosing between Treament Strategies for Gastroesophageal Reflux Desease. Med Decis Making 2002;22:298-308
 - **Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 1997;50:683-91
 - CES. Guide méthodologique pour la mise en place d'une analyse d'impact budgétaire. Paris: Collège des économistes de la santé;2008.
 - Denis JB. (Mia-Inra) et Ritz Magali (Mica-Inra). Notions de Base Utiles en Modélisation Stochastique de Phénomènes Complexes. Accès internet 17/01:2012
 - ++ HIQA. Guidelines for the Budget Impact Analysis of Health Technologies in Ireland. Dublin: Health Information and Quality Authority;2010.
 - Huang E, Esrailian E, Spiegel BM. The cost-effectiveness and budget impact of competing therapies in hepatic encephalopathy a decision analysis. Aliment Pharmacol Ther. Oct 15 2007;26(8):1147-1161.
 - ++ Jansen JP. Crawford B, Bergman G,Stam W. Bayesian meta-analysis of multiple treatment comparisons: an introduction to mixed treatment comparisons. Value Health.2008 Sep-Oct;11(5):956-64
 - ++ Launois R., Avouac B., Berenbaum F., Blin O., Bru I., Fautrel B., Joubert J.-M., Sibilia J., Combe B., Comparison of Certolizumab Pegol with other anti-cytokine agents for the treatment of rheumatoid arthritis: a multiple-treatment bayesian meta-analysis, The Journal of Rheumatology,2011 May;38(5):835-45
- Launois R « Les arcanes décryptées de l'analyse médico économique à l'usage du décideur » Journal d'Economie Médicale 2008.Vol 26 N° 6-7 : 331-349
 - ++ Launois R, Payet S, Saidenberg-Kermanac'h N, Francesconi C, Franca LR, Boissier MC. Budget impact model of rituximab after failure of one or more TNFalpha inhibitor therapies in the treatment of rheumatoid arthritis. Joint Bone Spine. Dec 2008;75(6):688-695.
 - ++ Launois R, Payet S, Riou Franca L, et al. L'évaluation des technologies de santé : les protocoles de deuxième génération. Journal d'Économie Médicale. 2006;24(5) : 213-228
 - ++ Launois R. « Notions et mesure des coûts en fonction de la perspective choisie » in Guide méthodologique pour l'évaluation des actions de santé, recommandations méthodologiques CES Paris 2003. Annexe 1 repris dans Launois R., Vergnenegre A., Garrigues B. Notions et mesure des coûts en fonction de la perspective choisie. Bulletin du cancer. Novembre 2003 ; 90 (11) : 146-154.
 - Launois R, Payet S. Évaluation pharmacoéconomique des épisodes dépressifs majeurs et des récidives. Neuropsy news. 2003;2(5):209-221.
 - ++ Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med. Oct 30 2004;23(20):3105-3124.
 - Maravic M « Economic impact of rheumatoidarthritis (RA) biotherapies in France » Joint, bone, spine: revue du rhumatisme 2010;77(6):546-51.
- Mauskopf JA, Sullivan SD, Annemans L, et al. Principles of good practice for budget impact analysis: report of the ISPOR Task Force on good research practices--budget impact analysis. Value Health. Sep-Oct 2007;10(5):336-347.
- Mauskopf JA, Earnshaw S, Mullins CD. Budget impact analysis: review of the state of the art. Expert Rev Pharmacoecon Outcomes Res. Feb 2005;5(1):65-79.
- Mauskopf J. Meeting the NICE requirements: a Markov model approach. Value Health. Jul-Aug 2000;3(4):287-293.
- ++Mauskopf J. Prevalence-based economic evaluation. Value Health. Nov 1998;1(4):251-259.
 - ** Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statemen Ann Intern Med August 18, 2009 151:264-269
- NICE. Developing costing tools Methods guide. London: National Institute for Health and Clinical Excellence; 2008.
- Niezen MG, de Bont A, Busschbach JJ, Cohen JP, Stolk EA. Finding legitimacy for the role of budget impact in drug reimbursement decisions. Int J Technol Assess Health Care. Jan 2009;25(1):49-55.
- ++ Orlewska E, Gulacsi L. Budget-impact analyses: a critical review of published studies. Pharmacoeconomics. 2009;27(10):807-827.
- Orlewska E, Mierzejewski P. Proposal of Polish guidelines for conducting financial analysis and their comparison to existing guidance on budget impact in other countries. Value
 Health. Jan-Feb 2004;7(1):1-10.
- Saporta G., Droesbeke JJ., Fine J. Méthodes bayésiennes en statistique. Edition Technip.Paris 2002

PL-11132 Robert Launois 38

