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Supplementary data 

Model assumptions, data sources and outcomes 

The model used clinical data, which was derived from a pivotal randomised study in which 

the primary endpoint was time to first breakthrough overt HE episode (RFHE3001). Time to 

first breakthrough OHE events is the duration from the time of first treatment, that was used 

in the study, to the first breakthrough OHE event. The study did not capture the length of 

OHE episodes because subjects discontinued at the time of breakthrough overt HE episode. 

Modelling of clinical efficacy 

Visual inspection of the five different fits indicates that the lognormal is the best fit to the 

Kaplan-Meier (KM) survival curves of time to breakthrough OHE (Figure 1, Figure 2). The 

estimated distribution parameters are used to measure the time-dependency transition 

probabilities, according to the following formula: 

𝑡𝑝(𝑡𝑢) = 1 − exp⁡{𝐻(𝑡 − 𝑢) − 𝐻(𝑡)} 

where 𝑢 is the Markov cycle and 𝑡𝑢 indicates that 𝑡 is calculated as integer multiples of the 

cycle length of the model (Briggs et al., 2006). 𝐻(𝑡) is a cumulative hazard function that can 

be calculated for lognormal distribution as following: 𝐻(𝑡) = − ln [1 − Φ(
ln(𝑥)

𝜎
)] , 𝑥 ≥

0; ⁡𝜎 > 0, where Φ is the cumulative distribution function of the normal distribution. The 

estimated log-normal model parameters are reported in Table 1. To test the proportional 

hazards assumption over the 6-month observation period of RFHE3001, a Cox proportional 

survival model was realised to test the Pearson correlation between Shoenfeld residuals. There 

was no significant correlation between treatment allocation and Shoenfeld residuals 

(p=0.1865). Therefore, there is no evidence for a violation of the proportional hazards 

assumption of treatment effect. 
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As the study endpoint in trial RFHE3001 was the first breakthrough OHE episode, there are 

no data for subsequent OHE events for both trial arms. With the purpose of estimating the 

survival curve for time to subsequent OHE, the assumption was made that RFHE3001 and 

RFHE3002 should be comparable in time to subsequent OHE events.  

Therefore, modelling of time to subsequent observed OHE was conducted using data from the 

open-label RFHE3002 (OLT) study using all OHE events excluding the first observed OHE 

event. Based on the findings of analysis that the RCT and OLT were comparable in terms of 

time to first observed OHE, the assumption was made that they should also be comparable in 

time to subsequent OHE events had RFHE3001 ‘event-failures’ been further followed. In this 

analysis, only new rifaximin-α treated subjects from the RFHE3002 OLT were used because 

whilst previous findings suggest that it would be reasonable to use the whole OLT dataset, the 

newly recruited subjects were almost identical to the rifaximin-α] treated subjects in the RCT 

in terms of time to first OHE (log-rank p=0.268) and also because this would isolate the 

results from any potential enrichment bias, resulting from inclusion of event-free survivors 

from the RCT. 

A survival analysis was performed to compare OHE event rates following first observed OHE 

event within the clinical trials compared with subsequent observed OHE events. This analysis 

was required for consistency with the economic model that reflects different event rates based 

on previous OHE events. The survival analysis demonstrates that event rates differ depending 

on whether experiencing first OHE or subsequent OHE event. The survival curves were used 

to populate survival rates in the economic model. 

Subsequent to generating the survival curves, an independent assessment of which 

distribution best fits the time to subsequent OHE event in the RFHE3002 data using only the 

newly recruited subjects. Five parametric survival models were fitted to the pooled time to 

subsequent event data from the new rifaximin-α-naïve patients recruited to the RFHE3002 
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study, one for each candidate distribution. The goodness of fit of the models to the data was 

assessed both statistically (Table 2) and graphically using the same criteria as for time to first 

breakthrough episode. The log-normal distribution appears to offer the optimal fit to the 

RFHE3002 subsequent HE event data. 

Unadjusted KM survival curves visually indicated that the time to event decreases with 

increasing of event cardinality. To generate the survival curves, an independent assessment 

was applied to find the most suitable distribution for the time to subsequent OHE event based 

on the RFHE3002 data, which used only newly recruited subjects. Five parametric survival 

models have been adjusted to the time to subsequent event data derived from the new 

rifaximin-α-naïve patients, who were recruited in the RFHE3002 study. The log-normal 

distribution appears to offer the optimal fit to the RFHE3002 subsequent OHE event data 

which is based on the suitability of fit of the models to the data. This conclusion was obtained 

using both statistical and visual criteria (Table 2, Figure 3). Based on the treatment effect 

proportionality assumptions and the durability at different stages of patients’ disease history, 

the model takes the inverse of the rifaximin-α estimated parameter, which have been used in 

the first transition model, and applies it equally to the lognormal parametric survival model 

for pooled subsequent events. The lactulose survival curve was obtained by multiplying the 

curve of rifaximin-α by the corresponding hazard ratio.  

According to the opinion of expert very few overt HE episodes have a duration exceeding 30 

days. Additionally, they suggested that all patients, who do not die during an overt HE cycle, 

are assumed to recover fully into the subsequent covert (CHE2) state. 

The model uses overall mortality, which has been not only observed in the RFHE3002 study 

but also in the one reported in literature (Bustamante et al., 1999), in the study of Toulouse 

University Hospital and French clinical practice. 
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All-cause mortality 

The cost-effectiveness model adjusts for all-cause mortality based on published French life 

tables (Chautant, 2013). The original age of the cohort considered in the analyses was 62 

years. The risk is adjusted to incorporate the weighted average of the ratio of males to females 

in the RFHE3001 study (60.9% and 39.1% of the ITT population were male and female, 

respectively). Given the relatively small contribution of deaths from liver disease to the total 

population mortality burden, deaths due to liver disease or HE-related deaths are not 

disaggregated from all-cause mortality. However, the inclusion of all-cause mortality can be 

disabled in the version of the model submitted with the economic evaluation. 

Disease-specific mortality 

There is evidence to suggest that patients who experience OHE events face a higher mortality 

risk than patients without HE, the mortality risk increases further with more severe grade of 

HE (Bustamante et al., 1999; Shawcross et al., 2011). Mortality data from RFHE3001 were 

not sufficiently mature to address the impact of rifaximin-α on survival. Therefore, data from 

the open-label clinical study RFHE3002 was used to model four mortality functions 

consistent with the health states specified by the economic model. Whilst there were sufficient 

subsequent HE episodes (n=102) in RFHE3002 new patients to calculate parametric survival 

models for time to subsequent overt HE, there were far fewer deaths in this subgroup to 

inform survival modelling. It was decided to pool all patient subsets from RFHE3002 for the 

purposes of modelling disease-specific mortality. The similar outcomes among the rollover 

and crossover patients was first compared to the new patients recruited to RFHE3002 by 

examining time to first HE in the study. Log rank tests of difference in survival curves for 

new subjects and for subjects recruited from RFHE3001 suggest that event-free survival 

between the subgroups was not statistically significantly different (p=0.893 and p=0.643 for 

new vs. rifaximin-α and new vs. PLB respectively). Time to death from the covert states 
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(CHE1 and CHE2) was analysed using parametric proportional hazards survival modelling. 

Probability of death whilst in the overt state was measured simply by counting the number of 

deaths within 30 days of onset of the first observed HE (OHE1) and then similarly for 

combined subsequent HE events (OHE2). 

Five parametric survival models were fitted to the OLT data, one for each candidate 

distribution. The log normal distribution appears to offer the best fit the survival distribution 

for covert mortality (Figure 4). 

Modelling of the time to death in the subsequent covert state (CHE2) was achieved using 

parametric survival modelling for the combined subsequent covert state dataset from study 

RFHE3002, analogous to that used to model time to subsequent HE. The Weibull distribution 

appears to offer a marginally better fit the subsequent covert mortality (Figure 4). 

As no single overt episode is assumed to last more than 30 days (equivalent to one model 

cycle) survival modelling whilst in the overt state (either first-observed or subsequent) is not 

warranted. To derive the likelihood of mortality within 30 days of an overt HE event, the 

probability of death was derived from observed death rates following the first-observed overt 

HE state. This was calculated to be 11.1%. The probability of death in a subsequent overt HE 

state ≥O2 was calculated as the number of subjects who died within 30 days of entering any 

subsequent overt HE state (n=15) in study RFHE3002 divided by the total number of 

subsequent overt episodes (n=194). This was calculated to be 7.7%. 

Valorisation of health states 

Health state utilities have been derived for the overt and covert health states in the model. An 

utility study was performed by Norgine using Time Trade-off or TTO (Norgine Ltd., 2013). 

Utility values (ranging from 1.0 for a perfect health to 0 for a death) were obtained for five 
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different health states. T-test was applied to evaluate statistical significance between different 

groups.  

Utility in the covert state was derived using the published results from post hoc analysis of the 

RFHE3001 (Sanyal et al., 2011). That data showed that in the covert remission state the 

rifaximin-α treated patients experienced an incremental improvement in QoL as measured by 

the Chronic Liver Disease Questionnaire (CLDQ) over those receiving placebo. At first, a 

relationship was derived between EQ-5D questionnaire and disease-specific questionnaire 

CLDQ. Then, the conversion of SF-36 data into EQ-5D utilities was performed using the 

response mapping algorithm developed by Gray et al (Gray et al., 2006). Rather than 

estimating final EQ-5D score directly, the algorithm predicts the ordinal response level to 

each of the five EQ-5D dimensions from the observed responses to the SF-12 subset of the 

SF-36.v1 questionnaire. Exploratory analysis of the relationship between CLDQ score and 

estimated EQ-5D index utility was performed with regression analysis applying linear, 

logarithmic, cubic and quadratic functions to determine best curve fit. The cubic or quadratic 

functions have the highest explanatory power (R2 = 0.590), and the linear function is only 

marginally lower with 58.7% of variation in EQ-5D utility explained by CLDQ score. 

Net monetary benefit 

In the present model the net monetary benefit (NMB) approach was used as an alternative of 

using the incremental cost-effectiveness ratio (ICER). NB method allows to avoid the 

limitations of ICER approach (A. H. Briggs et al., 2002). Net Benefit can be expressed in 

health (NHB) or monetary (NMB) terms. The intervention with the higher Expected Net 

Benefit is the cost effective choice. 

𝑁𝐻𝐵𝑖 = 𝐸𝑖 −
𝐶𝑖
𝜆

 

𝑁𝑀𝐵𝑖 = 𝐸𝑖 ∗ 𝜆 − 𝐶𝑖 
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where 𝐶𝑖 is the cost under the intervention of interest, 𝐸𝑖 is the effectiveness the intervention 

of interest, and 𝜆  is the cost effectiveness threshold/willingness to pay for health. The 

intervention with the higher positive NMB is a preferred treatment. The probability that the 

new technology is cost-effective comparing to the current technology is calculated in four 

steps:  

- compare the NMB for each simulation run; 

- count the cases when new technology has the greater NMB; 

- divide this number by the total number of simulations.  

A cost-effectiveness acceptability curve or CEAC is a graphical representation of the 

quantitative measure of uncertainty around the expected cost effectiveness. However, CEAC 

does not tell the decision maker that technology has the highest Expected Net Benefit, and 

this is the criterion that we expect decision makers will use when selecting a cost effective 

option (A. H. Briggs et al., 2002). The choice facing decision makers is to maximise Expected 

Net Benefit for a relevant value of lambda. The cost-effectiveness acceptability frontier 

(CEAF) is constructed by plotting the CEACs for the technologies being compared. And then 

the technology with the highest Expected Net Benefit at each value of lambda and for each 

CEAC trace the portion where the technology also has the highest Expected Net Benefit was 

identified.  To calculate the point where the frontier ‘switches’, the point of the same net 

monetary benefit for two options was used: 

𝑁𝑀𝐵2
̅̅ ̅̅ ̅̅ ̅̅ = 𝑁𝑀𝐵1̅̅ ̅̅ ̅̅ ̅̅  

𝐸2̅̅ ̅ ∗ 𝜆
∗ − 𝐶2̅̅ ̅ = 𝐸1̅̅ ̅ ∗ 𝜆

∗ − 𝐶1̅̅ ̅ 

𝜆∗ =
𝐶2̅̅ ̅ − 𝐶1̅̅ ̅

𝐸2̅̅ ̅ − 𝐸1̅̅ ̅
= 𝐼𝐶𝐸𝑅 
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Table 1. Estimated parameters for log-normal parametric survival model of time to first OHE 

episode in study RFHE3001. 

 Coefficient value S. E. P-value lower CI upper CI 

Rifaximin-α* 1.094 0.269 <0.001 0.568 1.621 

Constant† 1.796 0.177 <0.001 1.450 2.142 

Ln(sigma)‡ 0.624 0.0763 <0.001 0.474 0.773 

S.E.: Standard Error; lower CI, upper CI: 95% confident interval;  

*: rifaximin-α treatment arm; †: constant component; ‡: natural logarithm of sigma coefficient.  

 

Table 2. Model fit statistics for alternative candidate parametric survival distributions, time to subsequent breakthrough 

overt episode (RFHE3002 new subjects) (Extract from the report Norgine, Belgium). 

Model Log Likelihood AIC BIC 

Exponential  -388.57  777.14  777.14  

Weibull  -381.78  763.57  763.57  

Gompertz  -377.56  755.11  755.11  

Log-Normal -377.20  754.40  754.40  

Log-Logistic  -377.80  755.60  755.60  

AIC: Akaike information criterio; BIC: Bayesian information criterion. 

 

Table 3. Parameter estimates for lognormal parametric survival model of time to subsequent overt HE episode in study 

RFHE3002 (new patients) including treatment effect from event-free survival model (Extract from the report Norgine, 

Belgium). 

 Coefficient Std. Err. P-value lower CI upper CI 

Lactulose* -1.0944 0.2686 0.0000 -1.6210 -0.5679 

Constant† 1.3830 0.1993 0.0000 0.9924 1.7736 

Ln(sigma)‡ 0.5533 0.0942 0.0000 0.3686 0.7380 

S.E.: Standard Error; lower CI, upper CI: 95% confident interval;  

*: lactulose treatment arm; †: constant component; ‡: logarithm of sigma coefficient.  
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Figure 1. Comparison of five resulting parametric event-free survival distributions for time to first overt HE event for 

lactulose arm in the RFHE3001 study. 

Figure 2. Comparison of five resulting parametric event-free survival distributions for time to first overt HE event for 

rifaximin-α arm in the RFHE3001 study. 
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Figure 3. Best-fit parametric survival function (log-normal) for time to subsequent overt HE event in the RFHE3002 study 

with fitted lactulose arm based on the inverse treatment effect modelled from time to first event data in study RFHE3001. 

 

 

Figure 4. Comparison of mortality curves and their best adjustments parametric curves (log-normal for CHE1 and 

Weibull for CHE2). 

 


