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Executive Summary 
Background and objectives 

 EQ-5D is an instrument for measuring and valuing health related quality of life. It comprises 

a classification system that allows respondents to describe their health, and a set of associated 

“utility” values for those health states based on preferences of the general public which allow the 

calculation of Quality Adjusted Life Years (QALYs). The descriptive system covers five 

dimensions: mobility, ability to self-care, ability to undertake usual activities, pain and discomfort, 

and anxiety and depression.  

 Until recently, EQ-5D allowed respondents to respond at one of 3 levels (3L) for each 

dimension (no problems, some problems, extreme problems). The 3L is the most widely used 

preference based measure used in economic evaluation in England, due in part to the fact that 

NICE recommends use of 3L health utilities in economic evaluations submitted to its 

Technology Appraisal Programme (NICE, 2013). 

 A new version of the instrument, EQ-5D-5L, aims to improve measurement by using five 

levels of severity for each dimension (no problems, slight problems, moderate problems, severe 

problems, and extreme problems). Utilities have been published for the 5L for England (Devlin 

et al. 2018). It has been shown that economic evaluations undertaken using 5L rather than 3L are 

likely to generate very different results (Wailoo et al., 2017, Hernandez et al. 2017), so 3L and 5L 

cannot be used interchangeably if consistent decision making is required.  

 Before a decision can be made about 3L versus 5L for economic evaluations that inform UK 

health policy, there is a requirement to critically assess the data and statistical methods that were 

used to generate the 5L value set. This reports contains this quality assurance assessment. 

The Valuation Methodology 

 The EuroQol Group has developed and promulgated a valuation protocol known as the 

EuroQol Valuation Technology (EQ-VT) for EQ-5D-5L. The EQ-VT has two main elements: a 

set of ten lead-time time trade-off (TTO) experiments and a set of seven discrete choice (DC) 

experiments, which require members of the public to compare and evaluate hypothetical health 

states. EQ-VT specifies the numbers of experimental subjects, the experimental tasks and health 

states to be valued and provides a digital environment for computer-assisted personal 

interviewing. The TTO and DC experiments involve only a small proportion of the 3,125 
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logically possible 5L health states; statistical modelling is used to extrapolate the observed data to 

the remaining health states. 

 The English valuation assessed in this report was based on EQ-VT version 1.0. Serious 

concerns with data quality were subsequently identified from the five countries that used version 

1.0. EQ-VT 1.0 has now been superseded and is no longer in use by EuroQol, so there is good 

reason to investigate the reliability of the data underlying the published value set.  

Data Quality: TTO data 

 The TTO experimental design examines 86 specified health states individually – (2.8% of the 

set of possible health states distinguished by 5L). Each experimental task requires the individual 

to decide on a trade-off between length of life and state of health, so that 10 years in a given 

impaired health state can be expressed as equivalent to a shorter life in perfect health. 

 There is strong evidence, both direct (self-reported) and indirect (poor data quality) that 

many participants in the experiments either found this difficult or did not engage effectively with 

the experimental tasks. Even casual inspection of the individual-level TTO data revealed 

immediately that much of the data treated as accurate in the published valuation analysis is 

logically inconsistent or otherwise potentially misleading.  

 We defined several different criteria to indicate problem responses (Table 2.5 in the report). 

Very large proportions of the data were found to suffer these problematic responses. For 

example, within the set of experimental participants: 

o 92% displayed at least one inconsistency, providing a higher or equal valuation to a health 

state defined unambiguously worse; 

o 30% were unable to distinguish more than four distinct value levels among the ten states 

they were asked to evaluate; 

o 29% reported at least one impaired health state as strictly worse than the worst state 

(55555); 

o over 50% displayed combinations of features in their responses sufficient to cast grave 

doubts on the validity of their entire TTO evidence. 
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Data Quality: DC data 

 The DC experiment involves 392 distinct specified states (12.5% of the 3125 logically 

possible EQ-5D-5L states), via 196 pairwise comparisons (0.01% of the logically possible 2-state 

comparisons). The DC experiments do not explore variations in length of life alongside health 

states and they only give rankings of states rather than quantitative differences. DC data are 

therefore less informative than TTO data, and play a more limited role in driving the results of 

the overall valuation. 

 There is little scope to examine validity of the DC data because the experimental design 

ruled out any combinations of choices capable of displaying logical inconsistencies. The only 

clear test that we can make on the DC data is a test of the assumption of statistical independence 

within the sequence of seven tasks undertaken by each participant. Unlike the TTO experiments, 

there is no evidence of any statistical dependence between the outcomes, nor of any systematic 

association with the position of the task within the sequence. 

Specification and Estimation of the Valuation Model 

 There are several potentially serious flaws in the specification of the statistical model used to 

extrapolate data to health states not covered by the valuation experiments. These are set out in 

Table 3.1 of the report. In our view, the most worrying are:  

o Apart from a proportionately small number of sample adjustments, the model assumes 

that all TTO responses are accurate within the resolution of the measurement software. This 

conflicts with the strong evidence of poor quality TTO data. 

o The specification of the model entails the assumption that valuations exceeding 1.0 

(perfect health) are possible but not observed because of a censoring process. In fact 

valuations for impaired health states above 1.0 are ruled out theoretically, and the upper 

bound should be modelled as an inherent limit, not as censored observation. This 

misspecification means that health states with only mild impairments will be systematically 

over-valued. 

o Although a joint TTO-DC model is estimated, there are conflicts between the utility 

assumptions made in constructing the TTO and DC components of the joint model.  
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 Estimation is based on a Bayesian approach implemented using WinBUGS software. The 

Bayesian approach combines sample TTO and DC data with prior information to form a 

posterior distribution for the parameters which determine valuations. The estimation software 

uses an iterative simulation approach (called MCMC) which, after an appropriately long sequence 

of iterations will simulate random draws from the posterior distribution. We find several major 

problems with the application: 

o The model is unidentified, so statistical inference based on data alone is impossible. 

o Priors on key parameters are informative, but there is no justification for the priors used, 

nor is any sensitivity analysis presented. 

o Some elements of the model are specified in a manner that is likely to cause problems for 

the MCMC algorithm used in WinBUGS. In particular, the method used to impose 

increasing values for improving health states and the latent class specification of unobserved 

behavioural heterogeneity cause the MCMC algorithm to converge slowly or cycle rather 

than converge. 

o We used standard software (CODA) to check on convergence of the estimation 

algorithm. There is a clear failure to achieve convergence, and the published estimation 

results are based on an inadequate number of iterations to ensure convergence to the 

stationary distribution. Moreover, possibly as a result of inappropriate model specification or 

parametrisation, it may be difficult in practice ever to achieve convergence. 

Conclusions and Recommendations 

Our examination revealed serious deficiencies in the TTO data. The same may be true of the DC 

experiments but the experimental design precludes any detailed assessment of data quality.  

There are numerous, serious concerns with the specification and estimation of the statistical 

model.  

On the basis of these findings, and the lessons that can be learnt from the substantial 

programme of work on EQ-5D-5L, we make the following recommendations: 

R1 A 5L value set for use in policy applications must be based on good quality data. A new 

programme of further development, including a new data collection initiative, should be 

considered to put EQ-5D-5L on a sufficiently firm evidential basis.  
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R2 A value set that is to be used in decision making must be based on a statistical modelling 

process that is robust and fit for purpose. If new data is collected, the statistical analysis 

should not simply replicate the analysis that has been reviewed here.  

R3  This review has demonstrated the value of in-depth assessment for research findings 

which are critical to policy. The academic peer review system cannot provide the depth of 

review that is required to comply with the recommendations of MacPherson, since journal 

referees do not have access to underlying data or computer codes, nor do they have the 

time or professional incentive to review in full detail. 

R4  It is good practice in scientific research for all relevant evidence to be made freely available 

to facilitate replication and secondary studies. This is even more important when the 

evidence underpins critical policy decisions. Full datasets, coding scripts and statistical 

analyses should be open to scrutiny to the fullest extent possible, within the bounds set by 

the need to protect personal information and respect research ethics. 
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SECTION 1:   BACKGROUND 

 

1.1     Introduction 

The EQ-5D descriptive system covers five dimensions of health: mobility, ability to self-care, 

ability to undertake usual activities, pain and discomfort, and anxiety and depression. The 

original version of EQ-5D (the EQ-5D-3L, 3L from here) allows respondents to indicate the 

degree of impairment on each dimension according to three levels (no problems, some 

problems, extreme problems). 3L has an associated set of utility values (“value set” in EuroQoL 

Group nomenclature) based on estimates of the preferences of the general population in the UK 

(Dolan 1997), as well as for many other countries. 

The 3L is the most widely used preference based measure used in economic evaluation in 

England. This is due, in part, to the fact that NICE recommends health utilities from the 3L be 

used in reference case economic evaluations submitted to its Technology Appraisal Programme 

(NICE, 2013). 

A new version of the instrument, EQ-5D-5L, includes five levels of severity for each dimension 

(no problems, slight problems, moderate problems, severe problems, and extreme problems) 

with the intention of improving the instrument’s sensitivity and reducing ceiling effects. 

Utility values for this 5L version are now available for England (Devlin et al. 2018). The NICE 

Methods Guide expected to allow the 5L to be used once tariffs became available. Economic 

evaluations undertaken for other purposes have started using the 5L.  

However, work undertaken for NICE via its Decision Support Unit (Wailoo et al., 2017, 

Hernandez et al. 2017) demonstrated that economic evaluations undertaken using 5L rather than 

3L are likely to generate very different results. These differences stem both from the responses 

individuals give to the descriptive system and the valuation systems. 5L utilities are shifted 

further up the distribution towards full health and compressed into a smaller space, than the 3L. 

These differences are large, having profound effects on the estimates of cost-effectiveness. New 

technologies that improve quality of life alone appear less cost effective if health gain is valued 

using 5L rather than 3L. Technologies that improve length of life only can appear more cost-

effective (Pennington et al. 2018).  

3L and 5L cannot therefore be used interchangeably if consistent decision making is required. 

NICE, and other decision makers, will need to recommend one version of the EQ-5D as their 

preferred option. Public sector decision makers must take steps to quality assure models that 



 12 

underpin those decisions, appropriate to the level of risk and consistent with the Macpherson 

report (Macpherson 2013). 

Given the widespread use of EQ-5D in economic evaluation in UK health care, the number and 

magnitude of decisions that could be influenced by the 5L valuation work is substantial. There is 

therefore a high level of risk associated with the move to 5L. Accordingly, NICE and the 

Department of Health and Social Care commissioned the Policy Research Unit in Economic 

Evaluation in Health and Care Interventions (EEPRU) to undertake quality assurance.  

1.2    An outline of the valuation methodology 

EuroQol has developed and promulgated a valuation protocol known as the EuroQol Valuation 

Technology (EQ-VT) for EQ-5D-5L. The EQ-VT comprises prescribed numbers of 

experimental subjects, experimental tasks and health states to be compared. It also provides a 

digital environment for computer-assisted personal interviewing. The EQ-VT has two main 

elements: a set of ten lead-time time trade-off (TTO) experiments and a set of seven discrete 

choice (DC) experiments. The same group of individual participants is required to undertake 

both the TTO and DC tasks. The basic details of EQ-VT and the way it was developed are set 

out by Oppe et al. (2014).  

Each TTO task evaluates a specified EQ-5D-defined impaired health state against a state of full 

health, in two stages. First, the participant attempts to choose a trade-off point at which full 

health with reduced survival is judged to be as good as the impaired health state lasting for 10 

years. Figure 1.1(a) shows the EQ-VT screen where this is done, using an iterative procedure 

starting from the mid-point of the 10-year window.1 If the participant feels that the specified 

state is worse than death, then no trade-off can be made within the 10-year window, and the 

procedure switches to stage 2. This implements an extended lead-time TTO with a total period 

of 20 years (See Figure 1.1(b)). Equivalence points are determined approximately, in steps of 0.5 

years. 

The set of health states evaluated by TTO is allocated using a mixture of hand selected states and 

a simulation procedure described by Oppe and van Hout (2017) which, in this application gives a 

sparse but broad coverage of the 3,125 possible health states defined by the EQ-5D-5L health 

description. The potential weakness of this type of generic experimental design is that the choice 

of health states to be assessed experimentally through TTO and DC tasks is not necessarily 

                                                 
 
1 Figure 1.1 and Figure 1.2 are reproduced with thanks from the interviewer briefing provided to us by OHE. 
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aligned with the configuration of health states found in real-life cost-effectiveness studies. The 

large and growing published literature on the EQ-5D-5L health description and value set says 

very little about the implications for actual cost-effectiveness work. We make a start on 

investigation of this issue in section 2.2.4, but much remains to be done. 

The lead-time phase was introduced to deal with problems encountered in the TTO experiments 

used to value the older 3L version of EQ-5D (Dolan 1997), which led to large numbers of TTO 

tasks which returned negative valuations for which an arbitrary rescaling was employed. The 

choice of a 10-year lead-time corresponds to the reasonable view that v = -1 is a realistic a priori 

lower bound for any health state valuation. 

The equivalence point T reached by the participant (measured from the start of the extended 20-

year window) ranges from T = 0 if a decade spent in the impaired state is perceived to be as bad 

as the loss of two decades of full health, to T = 20 if the state is perceived to be equivalent to full 

health. The equivalent value of the health state is then defined as: 

𝑣 =  
𝑇 − 10

10
 ,                                                                     (1) 

which ranges from -1 for the maximum sacrifice that can be measured, to +1 for equivalence to 

full health. 

We draw attention to three potentially problematic outcomes for T. At T = 0, no trade-off takes 

place, implying a valuation v below -1; at T = 10, the TTO outcome is exactly at the seam 

between the primary TTO time frame and the secondary lead-time; at T = 20, the participant is 

unable to distinguish the specified state from full health. If the experiments work well and 

participants are able to make judgements matching the finer 5L classification, we would expect 

there to be few outcomes at these levels. 
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(a) The initial screen (states better than dead) 

 

(b) Secondary screen (states worse than dead) 

Figure 1.1: EQ-VT screens showing the two components of the composite TTO task 
 

For the DC component, seven pairwise comparisons were allocated to each participant. For each 

DC task, the participant is presented with two EQ-5D health states (on a screen shown in Figure 

1.2) and asked to rank them.  
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Figure 1.2: EQ-VT screen showing a discrete choice task 
 

DC experiments are much less informative than TTO experiments for two reasons: they give no 

indication of the trade-off between health state and length of life; and they do not give any 

quantitative information on the margin by which one state is preferred to another. As a 

consequence, we would normally expect TTO data to be the dominant source of information in 

this type of valuation study. 

The results of the TTO and DC experiments provide the input into a model-based statistical 

analysis that aims to do two things: 

 It “averages out” random differences between individuals’ valuations of the same 

experimentally-specified health states, using a conditional expectation predictor. If 

successful, this means that the resulting valuations represent the population as a whole 

rather than the particular randomly-selected individuals involved in the experiments. 

 It gives a basis for extrapolating from the small set of health states covered by the 

experiments to the much larger set of health states that might be observed in real-life 

studies. 

These two aspects of the valuation analysis are quite distinct and they require judgements about 

sample size and experimental coverage. These issues are examined in more detail in Section 2.  
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1.3    The review process  

The objective of this review is to give an assessment of the quality of the EQ-5D-5L valuation 

tariff published by Devlin et al. (2018) that was funded by the EuroQoL Research Foundation 

and the UK Department of Health. We were supplied with a range of datasets and supporting 

documentation by the authors. These materials are listed in Appendix A1. 

The assessment is in two parts:  

 Section 2 of the report gives an assessment of the quality of experimental data on which 

the valuation model is based.  

 Section 3 assesses the specification and implementation of the statistical model used to 

construct the valuations 

Section 4 summarises the findings and gives recommendations of two kinds: 

 Recommendations for NICE and other decision makers in the English health care 

system on the proposal to adopt the 5L value set for England  

 General recommendations for future research in this area 
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SECTION 2:   DATA QUALITY 

In this section, we investigate the reliability of the experimental TTO and DC data on which the 

Devlin et al. (2018) valuation study is based.  

2.1  The research protocol 

The experiments were conducted in accordance with the standardised EQ-VT protocol which 

has been used internationally by a number of EuroQol affiliated groups. There are both 

advantages and disadvantages of following a standardised research protocol. On one hand, it 

promotes international comparability and can – if it is well designed – promote the spread of 

good practice. On the other hand, it may fail to accommodate adequately the differences (in 

target populations, technologies and geographical areas) between applications, and it may 

discourage critical thinking about individual applications. 

A further difficulty is that the protocol has changed over time. The TTO and DC experiments 

reviewed here were conducted under EQ-VT version 1.0, which has been superseded 

successively by two revised versions. Version 1.0 is reported to have given rise to problems: “In 

the first wave of valuation studies applying the first version of the protocol (EQ-VT Version 1.0), major data 

issues were observed leading to EQ-VT Version 1.1, a comprehensive research program and finally to the 

improved EQ-VT Version 2.0.” (Ludwig et al. 2018). An unpublished research paper presented at 

the 2014 Scientific Meeting of the EuroQol Group and accessible through the EuroQol website 

(Shah et al. 2014) documents some of these data problems. Neither of the key published sources 

(Devlin et al. 2018, Feng et al. 2018) is specific about the use of a problematic early version of 

EQ-VT, nor do they reference Shah et al. (2014). 

International experience underlines the problems with EQ-VT 1.0 and suggests that major 

improvements are achievable. Five countries used EQ-VT v1.0 (England, Netherlands, Spain, 

Canada and China). The associated published papers give little information on data quality, but 

the following relevant issues were reported. 

Canada: only TTO data were used and it was decided to exclude 11.2% of the participants. The 

authors report excluding data from participants under either of two circumstances: “(a) giving the 

same or a lower score for the very mild health state compared with 55555; and (b) giving the same or a lower score 

for the very mild health state compared with the majority of the health states that are dominated by the very mild 

health state within the same block. The definition of “majority” used here was 3 of 5/6 health states or 4 of 7/8 

health states that are dominated by the very mild health state in the same block. As a result, a total of 136 of 

1209 participants met the exclusion criteria.” (Xie et al 2016) 
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Netherlands:  87 respondents (8.8%) valued state 55555 at least 0.5 higher than at least one 

other state. (Versteegh et al 2016) 

Spain: the authors discussed general concerns about data quality and attempted to address these 

in a subsequent paper. They reported “protocol violations”, that “for most respondents in the valuation 

study (76.1%), interviewers did not show and explain the iterative procedure allowing for WTD responses.” The 

authors refer to “satisficing” as a lack of engagement with the exercise: 61.3% of the cTTO 

responses exhibited this behaviour. (Ramos Goni et al in press) 

It is our understanding that the major issues with the data quality from these first three studies 

were identified and acknowledged by the EuroQoL group which led to a one-year moratorium 

on 5L valuation studies and the development of EQ-VT v1.1.  Version 1.0 is no longer in use. 

Version 1.1 introduced a quality control procedure based on four criteria, three of which relate 

to the process of the interview (e.g. the time to explain the preliminary wheelchair example) and 

one relates to extreme inconsistencies in valuations relative to 55555. Interviews failing these 

criteria are flagged as being of suspect quality, allowing feedback to interviewers, retraining and 

deletion of suspect data.  

Korea: EQ-VT 1.1 was used and 34% of respondents provided at least one inconsistent TTO 

response (Kim et al 2016). Consistency means that if one health state is better than another in at 

least one dimension and not worse in any other, then the valuation of the former state should 

also be higher in order to be consistent. Kim et al used a definition of “weak” inconsistency in 

this study. Here, if the better health state is valued equal to the unambiguously worse health 

state, this is not considered an inconsistent response. 

Uruguay: EQ-VT 1.1 was used and data from 10 interviewers (220 interviews) were excluded as 

a result of feedback from the Quality Control process. (Augustovski et al 2015) 

Version 2.0 built on v1.1 by the addition of a feedback module to respondents as an internal 

check on their responses.  

Germany EQ-VT 2.0 was used; 17.69% of respondents had at least one inconsistency (i.e., 

health state A defined as better than health state B but A having a lower cTTO value) prior to 

feedback, which reduced to 12.6% after feedback. (Ludwig et al 2018)  

It seems that the changes to the VT have led to improvements in data quality. The methods used 

in the English valuation study are no longer in use because of this; data for countries such as 

Germany are substantially better quality. 
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2.2  Sample size and sample coverage 

Before examining the data in detail, we first consider the important distinction between sample 

size and sample coverage for the purposes of valuation. It is important to distinguish sampling 

error from specification error. Sampling error arises from the random selection of the sample 

and can be reduced by increasing the sample size. However, if the statistical model is incorrectly 

specified, an increased sample size does not solve the problem – it merely gives more precise 

estimates of the wrong thing. Coverage by the experimental sample of the population of adults 

and the range of possible health states is key to our ability to produce robust valuation results. 

Even in a small sample, model misspecification can be more easily detected – and its 

consequences ameliorated – if the sample design achieves good coverage of the range of values 

in the population. 

2.2.1  An illustrative example 

Figure 2.1 illustrates this with an artificial example of straight line regression, generated through 

Monte Carlo simulation. Panel (a) shows the results of a regression of y on x with a sample of n 

= 100 observations, and the covariate x randomly generated with little dispersion. The slope 

coefficient is estimated as 0.45 with a standard error of 0.10. Panel (b) shows the result of 

generating a sample five times larger: the estimate is now 0.48 with a reduced standard error of 

0.04. The improved precision comes purely from the ability of the regression to “average out” 

random variation more effectively. Panel (c) goes back to the original sample of n = 100, but 

rescales the x-observations to cover a wider range. The estimate is again 0.48 with a standard 

error of 0.04.  

So, in this example, increased sample size and improved coverage are equally effective in 

reducing sampling error. However, the estimate in panel (c) is obviously far more robust than the 

estimate of panel (b), despite its much smaller sample size. The regression fit in panel (b) tells us 

nothing about individuals for whom x is below 0.3 or above 0.7, so if the true relationship 

departs from linearity in the extremes of the range, there is no possibility of detecting it or 

correcting the bias it causes. On the other hand, the smaller sample of panel (c) covers the wider 

range well and allows a much more robust analysis to be carried out. 
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(a) Small sample size, poor covariate coverage 
 

 

 

 

 

 

 

 

 

 

 

 

    

 (b) Large sample size, poor covariate coverage     (c) Small sample size, good covariate coverage 
 

Figure 2.1: A linear regression example of sample size vs sample coverage: improved 
coverage of population by the covariate gives a more robust fit than increasing sample 
size five-fold  
 

Although the TTO- and DC-based valuation models of Devlin et al. (2018) are more complex 

than linear regression, the general principle illustrated in Figure 2.1 remains important. For a 

statistical analysis to be robust, it is important to achieve good coverage of the range of relevant 

factors in the population; otherwise, extrapolation to cases not adequately represented in the 

sample is dangerous. In the case of the TTO and DC experimental data, the key issue is whether 

the specified experimental tasks cover a sufficiently wide range to represent adequately the range 

of health states likely to be encountered in practical cost-effectiveness applications. 

2.2.2  Coverage of logically possible states 

Table 2.1 summarises the degree to which the possible health states are covered by the design of 

TTO and DC tasks. There are 55 = 3,125 logically possible states defined by the EQ-5D-5L 

health description, and the TTO experimental design examines 86 specified health states 
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individually – under 3% of the full set of health states. The DC experiment involves 392 distinct 

specified states, 12.5% of the full set. However, DC experiments are not very informative – we 

only observe rankings within specified pairs of states. Thus it could be argued that the relevant 

indicator of coverage is the number of DC pairwise comparisons as a proportion of the 

3,125×3,124/2 = 4.88 million possible comparisons. 

Table 2.1: Coverage of health states 

 Number of distinct states % coverage of possible states 

Logically possible health states 
in EQ-5D-5L descriptive system 

3,125 - 

Own health states reported by 
participants 

180 5.8% 

States covered by TTO 
experimental design 

86 2.8% 

Separate states covered by DC 
experimental design 

392 12.5% 

Logically possible 2-state 
comparisons 

4,881,250 - 

Pairwise choice situations 
covered by DC tasks 

196 0.01% 

 

 

An alternative summary of coverage can be made using a quantitative health index. The simplest 

construction is the “misery” index, defined as the sum of the five EQ-5D-5L items. Figure 2.2 

compares the misery distributions of health states involved in the TTO experiments and the full 

set of 3,125 possible states. The TTO experimental design uses heavy coverage of the two 

extremes of the distribution (misery = 5 and 25) as a strategy to anchor the scale, and it also 

covers states very close to full health (misery = 6). The mean misery level across all 10,000 TTO 

tasks is 14.8, which is close to the average of 15.0 in an unweighted list of all EQ-5D-5L states. 

But there are obvious gaps in coverage close to full health (misery = 7) and at very poor health 

states (misery = 23 and 24). These gaps in coverage might be important for certain cost-

effectiveness applications involving treatments for people in good and very poor health states. 
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(a) Distribution of experimental states               (b) Distribution in full list of 3,125 states 

Figure 2.2: Coverage of the TTO experiments compared in terms of the additive 
“misery” index with the full list of EQ-5D-5L states  
 

2.2.3  Coverage of empirically relevant states 

The coverage rates in Table 2.1 are very small but not necessarily a major problem.2 Figure 2.2 

compares the distributions of the misery index in two datasets: (i) the set of 10,000 TTO tasks, 

covering 86 distinct states; and (ii) the data from the EuroQol Group’s (EQG) reference survey 

(van Hout et al. 2012) containing the responses from 3,637 individuals who report 676 (21.6% of 

the total) distinct current EQ-5D-5L states. The EQG sample contains a small group of healthy 

individuals but is otherwise representative of several important disease-specific groups. 

The mean of the misery index in the EQG sample is only 10.1, despite that survey’s clear focus 

on disease groups. Figure 2.2(a) shows that coverage of the TTO experimental design in the 

neighbourhood of that mean level is relatively thin. For example, only 16.9% of the TTO tasks 

involve health states with misery scores in the range 7-12, whereas almost half (46.8%) of the 

individuals in the EQG dataset report health states in that range. Note that conventional 

statistical power calculations (as made by the 5L research team and reported in Oppe and van 

Hout 2017) only take into account sampling error and not the robustness issue linked to 

coverage. 

We have used the misery index here because it is independent of any value modelling. However, 

if we use the published Devlin et al. (2018) value set to construct an alternative health measure, 

                                                 
 
2  For example, in statistical analysis of continuous variables, sample coverage rates are essentially zero, since a finite 
sample must necessarily miss almost every point on a continuum. 
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the picture of coverage does not change markedly – for example, 12.7% of the TTO states lie in 

the utility range 0.6-0.9, whereas 44.8% of EQG respondents report states in that range. 

 

 

  

(a) Distribution of experimental states              (b) Distribution in EQG reference sample 

Figure 2.3: Coverage of the TTO experiments compared in terms of the additive 
“misery” index in relation to the EQG reference sample 
 

2.2.4  Coverage of states important to cost-effectiveness studies 

Although utility scoring systems have been developed specifically for the purposes of cost-

effectiveness analysis (CEA), the design of the TTO experiments appears to be largely 

independent of evidence from real-life CEA studies. As a consequence, we have very little idea 

of the extent to which the coverage of health states involved in the TTO experiments matches 

the states which are most influential in determining the outcomes of CEA. Given the wide range 

of disease areas covered by CEA studies in practice, this is perhaps inevitable for generic (rather 

than disease-specific) valuation systems like those produced under the EQ-VT protocol.  

To make a small start in this under-researched area, we have looked at two actual CEA studies, 

covering a range from mild to very serious: the HubBLe trial for surgical treatment of 

haemorrhoids (Alshreef et al. 2017); and the Big CACTUS study of aphasia treatment for people 

with stroke (https://www.sheffield.ac.uk/scharr/sections/dts/ctru/bigcactus). Both trials 

observed EQ-5D-5L health states directly at baseline and 12 months, and Big CACTUS 

additionally at 6 and 9 months. 

The coverage rates are given in Table 2.2. If we take the list of distinct health states specified (as 

alternatives to full health) in the TTO experiments, they cover only 6.7% or 3.9% respectively of 

the distinct states reported by the full group of HubBLe or Big CACTUS participants. When we 

https://www.sheffield.ac.uk/scharr/sections/dts/ctru/bigcactus
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take into account the frequency with which trial participants report health states by using 

frequency-weighted coverage rates, the results change in an interesting way. In the HubBLe trial, 

severity is low and many reports depart from full health 11111 only in a single digit. Such states 

are heavily represented in the TTO experimental design, so coverage of reports (rather than 

distinct reported states) increases to over 50% when we weight by frequency. A smaller increase 

of almost 9 percentage points occurs in the Big CACTUS trial, where health states are typically 

much poorer than in HubBLe. 

For the purposes of cost-effectiveness research, there is a case for judging coverage in relation to 

the health states of trial subjects who are pivotal in determining the outcome of the cost-

effectiveness study – those with the largest absolute magnitude of utility change. For each trial 

sample, we select the 20% of trial participants showing the largest absolute change over a year 

and repeat the calculation of weighted and unweighted coverage within that smaller group of trial 

participants. The coverage rates rise substantially for HubBLe, where coverage of over 70% for 

the most pivotal reported states seems very good. The more severe states reported by Big 

CACTUS participants are much less well covered, with only one in eight of the most influential 

reported states being directly involved in the TTO experiments. 

This analysis raises the possibility that the coverage of TTO and DC experiments may be better 

suited to applications involving mild rather than severe states of ill-health. However, that 

conclusion is speculative at present because it is not based on large representative range of cost-

effectiveness studies. Further research is needed to link the design of valuation methods to actual 

technology appraisals. 

Table 2.2  Coverage of reported health states in two representative cost-effectiveness 
studies 

 

 Cost-effectiveness study 

 HubBLe Big CACTUS 

Experiment 
type 

All cases 
1 

Influenti
al cases 2 

All cases 
1 

Influenti
al cases 2 

Coverage of (unweighted) list of 
health states reported by trial 
subjects 

TTO 6.7% 15.1% 3.9% 7.1% 

DC 20.2% 28.3% 15.7% 16.7% 

Number of states in trial  89 53 363 42 

Coverage of health states 
reported by trial subjects 
weighted by reporting frequency 

TTO 50.3% 71.9% 12.8% 12.4% 

DC 56.4% 73.3% 28.8% 34.7% 

Number of states in trial  346 637 895 193 

1  All health state reports by trial participants, excluding reports of full health.  2  All health states reported by the 
20% of trial participants reporting the largest absolute utility change from baseline to 12 months. 
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2.3  Sampling of participants 

The EQ-VT protocol recommends a sample size of 1,000 individuals, with 10 TTO tasks 

assigned to each individual. The sample size is small by the standards of major health and social 

surveys – for instance, the 2016 Health Survey for England (HSE) had over 8,000 respondents. 

Nevertheless, the sample size should be adequate for representation of major population groups. 

We are not aware of any formal analysis of sampling error and specification robustness that led 

to this recommendation. There are two published accounts of the process of data collection 

(Devlin et al. 2018 and Feng et al. 2018), two accompanying online appendices, and two pre-

publication Discussion Paper versions (Appendix A1.3). However, those sources are not 

consistent in all details and there are some conflicts in reported sample numbers3.  

Fieldwork was carried out by a highly-regarded survey agency, Ipsos MORI, using a well-

established approach. The initial recruitment phase uses two-stage random sampling from the 

Postcode Address File based on 66 primary sampling units, with random selection of one adult 

(aged 18+) from each household. This led to slightly over 2,000 potential subjects.  

Participants in the study were required to: (i) be successfully located by the interviewer; (ii) 

provide personal data on age, gender, health state, education, employment, etc; (iii) undertake ten 

TTO tasks; and (iv) undertake seven DC tasks. Non-response could arise through non-contact, 

outright refusal to participate, refusal or inability to provide all required personal information, or 

through unwillingness to complete all TTO and DC tasks. 

The non-response rate of over 50% is high by the standards of social surveys (c.f. 41% for the 

2016 HSE). But bias caused by non-response depends on the pattern of non-response rather 

than its level. In this case, we know little about the way that non-response is related to personal 

characteristics of the non-respondents. A decision was made by the designers of the experiment 

to discard all information about individuals who refused participation or gave partial responses, 

so we have no direct evidence on the personal characteristics related to a high risk of non-

response. This contrasts with practice in many health and social surveys, which is to retain partial 

responses and record as much information as possible on non-contact and refusal cases, to make 

                                                 
 
3 The pool of potential subjects is given variously as 2,020 and 2,220 by Feng et al. (2018), page 24 and Devlin et al. 
(2018), page 12, respectively. A response rate of 47.7% is reported by Devlin et al. (2018), page 12. Depending on 
the definition used, the final sample size could be 1,000, 999, 996 or 912. The cited 47.7% response rate would 
imply an initial pool of size 2096, 2094, 2088 or 1912, none of which is consistent with the figures quoted by Feng et 
al. (2018) and Devlin et al. (2018), even allowing for rounding error. 
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possible statistical modelling of the response processes and adjustment for non-response bias. 

Although there are ethical issues involved in handling non-response, they are not an insuperable 

barrier, as evidenced by the long record of success for health and social surveys which do collect 

extensive response data. 

In the absence of detailed information on the response process, we can compare the sample 

structure with available information on the structure of the England and Wales population. We 

have used the supplied data to reproduce Table 1 from Devlin et al. (2018). For a set of 12 

participants, most of the personal characteristics are coded as “N/A”. It is unclear what this 

means or why the information is missing. The published Table does not make clear the 

numerical base on which each sample percentage is calculated. Our Table 2.3 clarifies this and, 

like the published version, summarises two slightly different samples: one covering the 996 

individuals who provided personal data and completed all TTO and DC tasks; the other covering 

the subset who were also not excluded from the Devlin et al. (2018) TTO component of the 

valuation model on grounds of inconsistent TTO responses.  

The statistical modelling reported by Devlin et al. (2018) uses sample weights to improve the 

alignment of the sample and population with respect to age, where age is categorised in four 

broad groups.4 The final column of Table 2.3 shows the reweighted sample composition for the 

set of participants who completed all TTO and DC experiments and provided age information. 

The age weighting strategy is not very successful in aligning the sample with the population. The 

composition of the reweighted sample remains biased towards: women rather than men; retirees 

rather than employees and students; divorced and widowed rather than never-married; ethnic 

majority rather than minority groups; and those with health limitations rather the healthy. 

   

                                                 
 
4 The dataset supplied to us contains another variable named “weight” which has a much more complex structure. 
This does not appear to have been used in the published work and the origin of that weight variable is unclear. 
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Table 2.3 Background characteristics of the sample 

 
All 
participants1 

After 
exclusions2 

General 
population 

Age-
weighted1 

 N (%) N (%) % % 
Partial sample n = 996 n = 912  n = 996 

Age 18–29 113 (11.3) 105 (11.5) 20.7 20.1 
Age 30–44 298 (29.9) 270 (29.6) 26.3 25.9 
Age 45–59 250 (25.1) 227 (24.9) 24.7 24.5 
Age 60–74 207 (20.8) 191 (20.9) 18.5 18.8 
Age 75+ 128 (12.9) 119 (13.0) 9.9 10.7 
Male 405 (40.7) 372 (40.8) 49.2 40.5 
Female 591 (59.3) 540 (59.2) 50.8 59.5 

Partial sample n = 984 n = 900  n = 984 

Employed/self‐employed 504 (51.2) 466 (51.8) 59.4 52.5 

Retired 277 (28.2) 256 (28.4) 13.1 24.5 
Student 20 (0.2) 19 (2.1) 8.8 3.1 
Looking after home/family 83 (8.3) 73 (8.1) 4.2 9.1 

Long‐term sick/disabled 48 (4.9) 42 (4.7) 3.9 4.7 

Other activity1 52 (5.3) 47 (4.9) 10.6 6.1 

Never married 237 (24.1) 213 (23.7) 34.6 28.9 
Married 466 (47.4) 434 (48.2) 46.6 45.3 
Civil partnership 2 (0.2) 2 (0.2) 0.2 0.2 
Separated 37 (3.8) 32 (3.6) 2.7 3.5 
Divorced 131 (13.3) 119 (13.2) 9.0 12.4 
Widowed 107 (10.9) 99 (11.0) 6.9 9.4 
Prefer not to say 4 (0.4) 1 (0.1)  0.4 

Christian 636 (64.6 575 (63.9) 59.4 62.8 
Other religion 60 (6.1) 53 (5.9) 8.7 6.2 
No religion 280 (28.5) 266 (29.6) 24.7 30.3 
Religion not stated 8 (0.8) 6 (0.7) 7.2 0.7 

White 899 (91.4) 832 (92.4) 85.4 91.0 
Other ethnic group 82 (8.3) 67 (7.4) 14.6 8.7 
Prefer not to say 3 (0.3) 1 (0.1)  0.3 

Health limited a lot 111 (11.3) 95 (10.6) 5.6 10.4 
Health limited a little 157 (16.0) 144 (16.0) 7.1 15.4 
Not health limited 716 (72.8) 661 (73.4) 87.3 73.2 

Degree 211 (21.4) 201 (22.3)  21.7 
Nodegree 774 (78.6) 699 (77.7)  78.3 

English 919 (93.4) 847 (94.1)  92.6 
Any other language 65 (6.6) 53  (5.9)  7.4 

Responsible for children 350 (35.6) 314 (34.9)  35.7 
Not responsible for children 634 (64.4) 586 (65.1)  64.3 

Experienced illness: self 330 (33.1) 297(32.6)  31.5 
Experienced illness: family 692 (69.5) 636 (69.7)  68.0 
Care for others 416 (41.8) 385 (42.2)  40.3 

Own EQ5D =11111 474 (47.6) 437 (47.9)  50.4 
Other EQ5D health state 522 (52.4) 475 (52.1)  49.6 

EQ‐VAS < 80 335 (33.6) 298 (32.7)  32.3 

EQ‐VAS 80–89 255 (25.6) 241 (26.4)  25.6 

EQ‐VAS 90–99 337 (33.8) 306 (33.6)  34.9 

EQ‐VAS 100 69 (6.9) 67 (7.3)  7.3 
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2.4  Participants’ experience of ill-health 

A striking feature of the data – which is inevitable in a general-population sample – is the limited 

direct experience that respondents have of significant health problems. Almost half (47.4%) of 

the 999 respondents providing personal data reported their current state as full health (EQ-5D-

5L description 11111). A third (33.2%) reported some past experience of their own unspecified 

“serious illness”; over two-thirds (69.4%) reported experience of other family members’ illness; 

and two-fifths (41.8%) reported having cared for others in ill-health. 20% of the sample reported 

no previous experience of illness in themselves or others, and of that 20%, over two-thirds 

reported their own current state as full health (11111). Although there is a strong argument in 

favour of basing utility scores on views held in the general population, the argument is weakened 

if those views are not well-grounded, so experience of illness is a potentially important 

characteristic. 

2.5  Participants’ self-assessment of difficulties 

The designers of the TTO and DC experiments wisely included questions asking subjects to self-

assess the degree of difficulty they encountered in completing the TTO tasks. Three questions 

were asked, about the difficulty of: understanding the TTO questions; distinguishing between the 

hypothetical lives they were asked to compare; and deciding on the appropriate trade-off point. 

Each self-assessment was given on a 5-point Likert scale. 

Figure 2.3 shows the distribution across the 1,000 TTO participants of these self-assessments. 

Just over half found it very easy to understand the questions, and just under half found it very 

easy to distinguish between the different hypothetical lives. In both cases, only around 10% of 

participants reported serious difficulty (points 4 and 5 on the scale). In contrast, over half the 

participants agreed with the proposition that they had difficulty in deciding on the equivalence 

point.5 These responses give grounds for caution in using the TTO responses and they underline 

the need for careful assessment of the quality of the TTO data. 

                                                 
 
5 Some of the difference between the first two measures and the third may be due to question design – the first two 
involved respondents agreeing that something was easy, whereas the other involved agreeing that something was 
difficult. The phenomenon of acquiescence bias may have contributed to a more positive response for the first two 
questions, and there may be a case for redesigning these questions. 
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Figure 2.4: Distribution of indicators of perceived difficulty of TTO tasks 
 
 

DC tasks are potentially simpler than the TTO, since they require only the ability to rank two 

states in terms of quality of life. Nevertheless, there were only slightly fewer participants 

reporting the two highest levels of difficulty (49% rather than 54%). Figure 2.4 shows the 

distributions of the three difficulty indicators. 
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Figure 2.5: Distribution of indicators of perceived difficulty of DC tasks 
 
 

We estimated logistic regression models of the probabilities of reporting either of the highest 

two levels of difficulty in making the TTO and DC choices. Table 2.4 shows the marginal 

effects, defined as the sample mean predicted change in probability as each personal 

characteristic changes in turn by one unit. The TTO and DC experiments clearly differ in terms 

of the characteristics of people who report difficulties. For TTO, the results are surprising. As 

might be expected, respondents whose main language was not English perceived more difficulty, 

by an average margin of 16 percentage points. But gender and ethnicity are also highly 

statistically significant, with men and members of ethnic minorities less likely (by 8 and 24 

percentage points respectively) to report difficulty in deciding on the equalising point. Since there 

is no reason to expect any real cognitive advantages of being male or a member of a minority 

ethnic group, this may capture some difference in their willingness to reveal problems with a 

difficult task.  
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No significant influences were found for the DC experiments; the overall P value is 0.0049 for 

TTO and 0.3452 for DC. 

 

Table 2.4  Marginal effects from logistic regression model of 
the association between personal characteristics and 
difficulty in making TTO and DC choices 

Characteristic TTO decision DC decision 

Age 0.002  (0.001) 0.001  (0.001) 
Male -0.079** (0.033) -0.049  (0.033) 
Never married 0.051  (0.043) 0.005  (0.044) 
Religious 0.005  (0.037) 0.017  (0.037) 
Ethnic minority -0.238***(0.059) 0.035  (0.063) 
Disability 0.039  (0.052) -0.036  (0.052) 
Degree 0.060  (0.039) 0.040  (0.040) 
Children 0.073* (0.039) 0.040  (0.040) 
Experience of caring -0.011 (0.033) 0.059*  (0.033) 
English not main language 0.158** (0.072) 0.117  (0.082) 

Empirical prevalence 0.543*** (0.016) 0.490*** (0.016) 
Statistical significance: * = 10%; ** = 5%, *** = 1%. Standard errors in 
parentheses. 

 

As we show statistically in sections 2.6 and 2.7, these indicators of difficulty in deciding on the 

TTO equivalence point and in making DC choices are strongly associated with the occurrence of 

problematic outcomes for the TTO and DC experiments. 

 

2.6  The TTO experiments 

TTO tasks present a considerable cognitive challenge to participants, since they are required to 

imagine the impact of being in unfamiliar health states, and deal with the difficulties involved in 

locating the equivalence point on the trade-off between ill-health and length of life. It would not 

be surprising to find significant numbers of participants unable to make reliable judgements. 

2.6.1  Individual-level analysis of TTO quality 

Ideally, participants would be able to discriminate clearly between marginally different health 

states and order them in a logically consistent way. If that is the case, we would observe 

substantial variation in the outcome T for each TTO task, without large numbers of outcomes 

piled up at the limits T = 0 and 20 or the seam between the two stage of the composite TTO at 

T = 10. We have defined a set of ten indicators that might be useful in identifying individuals 

generating poor-quality TTO data. They are listed in Table 2.5, together with the proportions of 
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individuals indicated by each, in the original TTO sample and the subsamples produced by 

removing individuals discarded or with outcomes modified by Devlin et al. (2018). 

As discussed in section 2.1 above, some health states in the TTO valuation tasks presented to 

respondents have a logical ordering. If health state A is better than health state B in at least one 

dimension, and not worse on any other dimension, then the valuation for state A should also be 

higher than state B for the response to be considered consistent. This is the definition of 

inconsistency used in the results below and is used as an indicator of problematic responses. A 

weaker test classes valuations of A and B that are equal as consistent6.   

Depending on which potential anomalies are regarded as serious, a proportion ranging from 52% 

to 94% of the individual participants provided at least one outcome which could reasonably be 

regarded as problematic. The statistical literature on classical and non-classical measurement 

error would suggest that error rates as high as these are likely to lead to very large biases in 

inferences drawn from the sample data. 

The sample deletions and other special treatment used by Devlin et al. (2018) to deal with 

problematic TTO outcomes make relatively little difference to this picture. Excluding 

problematic individuals from the data used for analysis only reduces the proportion of 

problematic respondents in the retained sample by around 4 percentage points. Among 

respondents who remain in the sample and who have no TTO outcomes given special treatment 

in the modelling, the proportion who give reason for concern remains high, at 44% to 91%, 

depending on the criteria used. 

 

 

  

                                                 
 
6 “Weak” inconsistency fails to capture some of the problematic responses apparent in Table 2.6 below. See, for 
example, respondent 1. 
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Table 2.5  Proportions of individual participants displaying potentially problematic response 
behaviour 
 

  % of sampled individuals 

Anomalous outcome type 
# 
individuals 

Original 
TTO data  
(n = 1,000) 

After sample 
deletions1 

(n = 912) 

After deletions 
and special 
treatment2 

(n = 604) 

(1) All individual’s TTO trials result in 
same value of T 

23 2.3% 0% 0% 

(2)  Individual reports at least 1 non-55555 
trial with same or lower value of T than 
trial of 55555 

668 66.8% 63.8% 49.8% 

(3)  Individual reports at least 1 non-55555 
trial with strictly lower value of T than trial 
of 55555 

289 28.9% 26.1% 28.6% 

(4)  Individual reports fewer than 5 distinct 
values for T  

309 30.9% 26.3% 20.9% 

(5)  Individual reports mild trial (1-point 
difference from 11111) with same or lower 
T result as trial of 55555 

84 8.4% 0% 0% 

(6)  Individual reports values T =0, 10 or 
20 in every trial 

41 4.1% 2.7% 0% 

(7)  Individual reports all ten trial values T 
as multiple of 5 years 

63 6.3% 4.2% 0.5% 

(8)  Individual gives only integer values   
for T 

362 36.2% 35.1% 31.1% 

(9) ‘Seam’ outcome of T = 10 in at least 
two trials with no outcome below 10 

164 16.4% 16.4% 0% 

(10a)  Individual with any inconsistencies 
between the logical ordering of health 
states and the TTO valuation 

922 92.2% 91.5% 88.4% 

(10b)  Individual with inconsistencies in 
more than 20% of tasks between the 
logical ordering of health states and TTO 
valuation 

518 51.8% 47.4% 39.1% 

Individual displays any of anomalies (1), 
(3), (4) or (5) 

520 52.0% 47.6% 44.2% 

Individual displays any of anomalies (1), 
(3), (4), (5), (7), (8) or (9) 

711 71.1% 68.4% 60.9% 

Individual displays any of anomalies (1), 
(3), (4), (5), (7), (8), (9) or (10b) 

769 76.9% 74.8% 67.4% 

Individual displays any of anomalies (1), 
(3), (4), (5), (7), (8), (9) or (10a) 

940 94.0% 93.4% 91.1% 

1 Deletions comprise the 88 individuals excluded completely from Devlin et al.’s (2018) analysis on grounds of missing 

personal characteristics or grossly inconsistent TTO outcomes.  2 “Special treatment” refers to the 308 individuals for whom 
one or more TTO outcomes are overridden or treated as censored by Devlin et al. (2018) 

 
  



 34 

To illustrate the serious concerns about much of the data that are used, unmodified, by Devlin et 

al. (2018), Table 2.6 reproduces the TTO outcomes for the first 30 individuals that remain after 

excluding individuals who were either excluded from Devlin et al.’s (2018) analysis, or whose data 

were subject to some special treatment (data edits or censoring). Thus all the TTO results in 

Table 2.6 were treated as fully accurate data. These cases have not been selected in any special 

way – they are the first 30 listed in order of the identifiers supplied with the datasets. The 

following list of problematic TTO outcomes illustrates the generally poor quality of the data: 

 Individual 1 is undiscriminating, giving a value v= 0.95 for 7 of the 10 tasks.  

 Individual 2 inconsistently rates state 33253 better than 23242  

 Individual 3 inconsistently rates mild states 12112 and 11212  much worse than states 34244, 

43514, 55424 and 44553 

 Individual 4 inconsistently rates states 21444 and 53244 worse than 55555 

 Individual 8 inconsistently rates mild state 11121 much worse than state 25222 

 Individual 10 inconsistently rates four states worse than 55555 

 Individual 11 inconsistently rates 44345 better than44125 

 Individual 12 rates state 12514 negatively (v = -0.5), while 55555 is rated as v= +0.5 

 Individual 13 rates state 14554 more highly than 12344 

 Individual 14 rates state 55555 above state 44345 

 Individual 15 rates state 35332 above 13122 

 Individual 16 is undiscriminating, giving v = 0.05 for 8 of the 10 tasks 

 Individual 17 inconsistently rates state 25122 (v= 0) below 45233 and 55233 

 Individual 19 rates 6 states below the worst possible (55555) 

 Individual 20 is undiscriminating for states with mild difficulties in the first three health 

domains, rating 12111, 11221 and 11235 as equivalent to full health; and inconsistently rates 

34515 above 12514 

 Individual 21 inconsistently rates 43514 and 34244 as worse than 55555 

 Individual 22 inconsistently rates state 53243 as equivalent to full health 

 Individual 23 rates state 55233 well above 45233, and is undiscriminating on poor health 

states, rating 12244 and 45233 as equivalent to 55555 

 Individual 24 rates state 31525 as equivalent to full health and (inconsistently) superior to 

21111; also 55233 above 45233, 25122 and 21111 

 Individual  25 rates state 24445 as much worse than 55555 
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 Individual 26 inconsistently  rates state 31514 above 11414 

 Individual 28 rates 7 of the 10 states (including 55555) at 0.95, above state 42115 at 0.9 

Although random response error could account for some of these cases, the large number of 

them and the egregious nature of some of the anomalies suggest that there might be serious 

difficulties for participants relating to their engagement with or understanding of the TTO tasks. 
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Table 2.6  TTO outcomes for the first 30 individuals (ordered by original survey id), excluding individuals excluded from model estimation 
and individuals with any TTO outcomes overridden or treated as censored in estimation 
Individual EQ5D v EQ5D v EQ5D v EQ5D v EQ5D v EQ5D v EQ5D v EQ5D v EQ5D v EQ5D v 

1 21111 1 12112 .95 11212 1 23152 .95 21345 .95 43514 .95 34244 .95 55424 .95 44553 .95 55555 .9 
2 11112 .8 12334 .65 32314 0 23242 .45 21334 .55 24342 .45 53412 .4 33253 .6 55225 .05 55555 -.2 
3 21111 .95 12112 .25 11212 .2 23152 .85 21345 .85 34244 .85 43514 .4 55424 .5 44553 .8 55555 -.65 
4 11121 .9 11414 .3 25222 .8 25331 .4 31514 .4 21444 -.6 35143 .5 53243 -.2 53244 -.4 55555 -.3 
5 11121 .95 11414 .7 25222 .8 31514 .5 25331 .7 21444 .5 35143 .5 53243 .7 53244 .5 55555 .2 
6 21111 .95 11212 .8 12112 .9 23152 .5 21345 .35 34244 .8 43514 .8 55424 .8 44553 .25 55555 .25 
7 12111 1 11122 .95 13224 .8 42321 .85 35311 .9 34232 .6 52335 .75 24445 .5 43555 .2 55555 .2 
8 11121 -.2 11414 1 25222 1 25331 -.5 31514 -.5 21444 -.5 35143 -.7 53243 -.5 53244 -.7 55555 -.95 
9 11211 .95 12121 .95 23514 .35 52215 .3 12543 .5 32443 .5 45133 .65 34155 .3 43542 .4 55555 -.35 
10 11211 1 12121 1 12543 .3 52215 .6 23514 .65 32443 .3 45133 .4 34155 .5 43542 .4 55555 .5 
11 11121 1 21112 1 12513 .8 53221 .3 12344 .3 44125 .2 54342 .3 14554 .3 44345 .3 55555 .2 
12 12111 1 11221 1 11235 .6 12514 -.5 54231 .8 51451 .6 34515 .6 45144 .5 35245 .8 55555 .5 
13 11121 1 21112 1 12513 .8 53221 1 12344 .6 44125 .7 54342 .8 14554 .8 44345 .6 55555 .5 
14 11121 1 21112 .9 12513 .8 53221 .9 12344 1 44125 .7 54342 .3 14554 .3 44345 .05 55555 .1 
15 11211 .85 13122 .5 42115 .3 11425 .2 51152 .5 22434 .3 35332 .8 45413 .4 24553 .6 55555 .2 
16 12111 .1 11122 .05 13224 .05 42321 .05 35311 .05 34232 .05 52335 .5 24445 .05 43555 .05 55555 .05 
17 21111 .2 11421 .6 13313 1 25122 0 12244 .6 31525 .3 45233 .2 55233 .5 52455 .5 55555 -.9 
18 11112 .8 14113 .7 21315 .3 15151 .2 31524 .2 52431 .8 43315 .3 24443 .2 54153 .1 55555 .1 
19 21111 .8 11212 .3 12112 1 23152 .4 21345 0 34244 .3 43514 .2 55424 .1 44553 .2 55555 .5 
20 12111 1 11221 1 11235 1 12514 .5 54231 .7 51451 .5 34515 .8 45144 .65 35245 .5 55555 .3 
21 21111 1 11212 .8 12112 .9 23152 .5 21345 .5 43514 .2 34244 .2 55424 .6 44553 .1 55555 .25 
22 11121 .8 11414 .5 25222 .6 25331 .6 31514 .5 21444 .3 35143 .6 53243 1 53244 .3 55555 .3 
23 21111 .95 11421 1 13313 .95 25122 .95 12244 .5 31525 .9 45233 .5 55233 .95 52455 .6 55555 .5 
24 21111 .6 11421 1 13313 .7 25122 .6 12244 .8 31525 1 45233 .6 55233 .8 52455 .7 55555 .5 
25 12111 .85 11122 .95 42321 .1 13224 .75 35311 .1 34232 .45 52335 .2 24445 -.5 43555 0 55555 0 
26 11121 .95 11414 .3 25222 .4 25331 .35 31514 .5 21444 .4 35143 .1 53243 .3 53244 .3 55555 0 
27 12111 .95 11221 .95 11235 .9 12514 .55 54231 .8 51451 .95 34515 .45 45144 .3 35245 .5 55555 0 
28 11211 1 13122 1 11425 .95 42115 .9 51152 .95 22434 .95 35332 .95 45413 .95 24553 .95 55555 .95 
29 11121 .95 21112 .8 12513 .7 53221 .8 12344 .2 44125 .4 54342 .2 14554 .2 44345 .2 55555 .05 
30 11211 .95 13122 .95 11425 .95 42115 .8 51152 .8 22434 .9 35332 .95 45413 .95 24553 .8 55555 .5 
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What are the personal characteristics associated with problematic TTO outcomes? Table 2.7 

summarises logistic regression models for the occurrence of each of the patterns of TTO 

outcomes (1)-(10) listed in Table 2.5. Explanatory covariates are included to capture possible 

influence of personal characteristics. The covariates were selected by comparing informally the 

mean characteristics of participants who gave problematic responses with those who did not, and 

selecting characteristics with substantial between-group mean differences for at least one of the 

indicators (1)-(10). We also include a binary variable indicating whether or not the individual 

agrees (at level 1 or 2 on a 5-point scale from 1 = agree to 5 = disagree) with the proposition 

that “I found it difficult to decide on the exact points where life A and life B were about the same”.  

There are relatively few statistically significant impacts of personal characteristics, except for the 

existence of a disability, which is associated with reductions of 5-8 percentage points in the 

prevalence of problems (4), (5) and (9); and minority ethnic identification, which is associated 

with increases of 9-17 percentage points in the prevalence of problems (2), (4), (7) and (9). 

The most consistent effect, statistically significant in seven of the ten problem indicators, is for 

self-reported difficulty with TTO. This might be expected to act as an indicator of weak 

cognitive or empathetic ability to carry out TTO tasks, and therefore to be positively associated 

with problematic TTO outcomes. But, interestingly, the reverse is true – all significant impacts 

are negative.7 The only interpretation that we can offer for this is that the covariate is acting 

instead as an indicator of the degree to which the participant takes the experiment seriously and 

struggles hard to give a worthwhile response; a participant who does not take the experiment 

seriously and simply gives an effort-minimising sequence of responses may then accurately 

report that (s)he did not find the task difficult.  

                                                 
 
7 This finding is not an artefact of the multivariate modelling approach – the mean prevalence of all but one of the 
problem indicators (1)-(10) is lower for those reporting difficulty in deciding TTO equivalence points. 
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Table 2.7   Marginal effects from individual-level logistic regression models for the probability of generating one or more potentially 
problematic TTO outcomes 

Personal 
characteristic 

Category of problematic TTO outcome  (defined in Table 2.5) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Age 
0.000 0.004*** 0.002* 0.001 0.001 0.001 0.001 0.001 0.000 0.001 

(0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Male 
0.001 0.019 -0.023 0.008 -0.005 0.013 0.011 0.072** 0.007 -0.014 

(0.010) (0.031) (0.030) (0.030) (0.018) (0.013) (0.016) (0.032) (0.025) (0.018) 

Single 
0.018 0.068* 0.116*** 0.009 0.056* -0.006 0.007 0.006 -0.021 0.019 

(0.018) (0.038) (0.042) (0.040) (0.030) (0.017) (0.023) (0.042) (0.031) (0.021) 

Religious 
0.021** -0.030 0.009 0.043 0.032* 0.025** 0.025 -0.018 -0.028 -0.033* 

(0.009) (0.034) (0.034) (0.034) (0.019) (0.013) (0.017) (0.036) (0.029) (0.018) 

Ethnic minority 
0.012 0.100* -0.000 0.168*** 0.060 0.051 0.086** 0.046 0.170*** -0.001 

(0.020) (0.055) (0.058) (0.063) (0.042) (0.033) (0.042) (0.063) (0.061) (0.034) 

English not main 
language  

0.056** -0.008 0.005 0.072 0.068* 0.017 0.033 -0.105** -0.043 0.025 

(0.027) (0.049) (0.047) (0.049) (0.036) (0.022) (0.028) (0.047) (0.034) (0.024) 

Disability  
-0.003 -0.041 0.011 -0.080** -0.050*** 0.002 -0.001 -0.021 -0.061** -0.018 

(0.012) (0.038) (0.037) (0.035) (0.018) (0.016) (0.019) (0.038) (0.026) (0.022) 

Degree  
0.033* 0.061* -0.019 0.058 0.060** 0.029 0.012 0.033 -0.027 0.017 

(0.020) (0.036) (0.036) (0.038) (0.027) (0.021) (0.021) (0.039) (0.029) (0.020) 

Has children  
0.013 -0.077** -0.083*** -0.020 -0.016 0.010 0.008 0.057* 0.025 -0.029 

(0.010) (0.031) (0.030) (0.030) (0.018) (0.013) (0.016) (0.032) (0.025) (0.018) 

Experience of 
caring 

-0.002 0.071 0.066 0.030 0.032 0.020 0.035 0.094 -0.027 0.009 

(0.021) (0.087) (0.075) (0.072) (0.037) (0.023) (0.028) (0.079) (0.054) (0.045) 

TTO difficulty 
-0.025** -0.075** -0.048 -0.105*** -0.053*** -0.031** -0.040** -0.018 0.023 -0.048*** 

(0.010) (0.030) (0.029) (0.030) (0.018) (0.013) (0.016) (0.031) (0.024) (0.017) 

Joint P-value 0.0020 0.0009 0.0220 0.0000 0.0000 0.0013 0.0001 0.0686 0.0606 0.1004 

Standard errors in parentheses. Statistical significance: * = 10%, ** = 5%, *** = 1% 
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Table 2.8 shows the proportions of TTO tasks producing problematic outcomes, rather than 

proportions of individuals concerned. 

 

Table 2.8  Proportions of TTO tasks producing a potentially problematic outcome 
 

Anomalous outcome type % TTO tasks 

(1a) Non-55555 trial with same or lower value of v than trial of 
55555 

26.3% 

(1b) Non-55555 trial with strictly lower value of v than trial of 
55555 

7.4% 

(2)  A valuation v = 0 is given at the seam between the primary 
TTO window and the secondary lead-time window  

13.1% 

(3)  A state with misery index < 15 is valued below -1 1.9% 

(4)  A state with misery index ≥ 15 is rated equivalent to full health  6.4% 

 
 
Since the TTO tasks are in sequence for each individual, we can treat them as successive waves 

of testing within each individual and use panel data modelling methods to analyse the way that 

potentially problematic responses develop sequentially. This is important, since the modelling 

methods used by Devlin et al. (2018) make little allowance for statistical dependence between 

TTO results within individuals.8 There is good reason to question this assumption, since it is 

likely that there is some learning by participants as the experiments proceed and there may also 

be fatigue effects as the burden of the tasks accumulates. 

To examine the influence on TTO outcomes of the specified health state and the characteristics 

of the participant and to investigate dependency within the sequence of tasks, we use the 

following dynamic panel data probit model: 

𝑣𝑖𝑡 = 𝛼𝑣𝑖𝑡−1 + 𝛽1𝑀𝑜𝑖𝑡 + 𝛽2𝑆𝑐𝑖𝑡 + 𝛽3𝑈𝑎𝑖𝑡 + 𝛽4𝑃𝑑𝑖𝑡 + 𝛽5𝐴𝑑𝑖𝑡 + 𝛽6𝑀𝑖𝑠𝑖𝑡 + 𝛽7𝑀𝑖𝑙𝑑𝑖𝑡 

                                                                        +𝛾𝑋𝑖𝑡 + 𝑢𝑖 + 𝜀𝑖𝑡        for 𝑡 = 2 … 10          (2) 

where: 𝑣𝑖𝑡 is the TTO outcome for individual i at the t-th task in value form and 𝑣𝑖𝑡−1 is the 

outcome from the previous task; 𝑀𝑜𝑖𝑡 … 𝐴𝑑𝑖𝑡 are binary indicators taking the value 1 if the 

                                                 
 
8 Devlin et al. (2018) actually assume the TTO valuations are independent except for a scale factor which has a 3-
point discrete probability distribution (see Appendix 2 for details). That specification would not allow for learning or 
fatigue effects. 
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relevant health domain (Mo = mobility, Sc = self-care, etc) is specified at level 4 or worse; 𝑀𝑖𝑠𝑖𝑡 is 

the misery index; 𝑀𝑖𝑙𝑑𝑖𝑡 is a binary indicator identifying a mild state (misery = 6); 𝑋𝑖𝑡 represents 

a set of other covariates, comprising personal characteristics, elapsed time spent on earlier TTO 

tasks and an indicator of perceived difficulty in deciding on the equivalence point; 𝑢𝑖 is an 

unobserved persistent random effect; and 𝜀𝑖𝑡 represents trial-specific random response errors.  

The parameter 𝛼 captures the possible dependence between the current TTO task and earlier 

ones, so between-task independence requires 𝛼 = 0. The parameters 𝛽1 … 𝛽7 represent the 

influence of the specified health state on the TTO outcome, and 𝛾 captures the influence of 

personal characteristics. The random effect 𝑢𝑖 allows for any tendency of individual i to give 

systematically high or low assessments of all health states. 

We estimate the model (2) using Wooldridge’s (2005) method for dealing with the correlation 

between the lagged dependent variable 𝑣𝑖𝑡−1 and the random effect 𝑢𝑖 . Coefficient estimates and 

their standard errors are given in Table 2.9. 

In all cases, the parameter 𝛼 is highly significant, so the independence assumption made by 

Devlin et al. (2018) is clearly rejected.9 The effect is particularly strong for indicators (3) and (4), 

which pick up any tendency to misclassify health states at the lower and upper extremes 

respectively. This strong sequential dependency suggests that a significant number of participants 

in the TTO experiments were generating repetitive sequences of implausible or completely 

nonsensical responses.  

 

 

 

 

 

 

 

 

                                                 
 
9 The initial condition variables which are used in the Wooldridge estimator are also highly statistically significant, so 
there is clear evidence of a lack of statistical independence within the sequences of TTO trials. 
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Table 2.9  Dynamic modelling of sequences of indicators of problematic TTO tasks 
 

Coefficient 
Type of problematic outcome 

(1a) (1b) (2) (3) (4) 

Lagged dependent variable 0.409*** 0.498*** 0.414*** 1.556*** 1.788*** 
 (0.065) (0.121) (0.065) (0.378) (0.229) 
Mobility >3 0.513*** 0.298*** 0.294*** 0.260 -0.070 
 (0.079) (0.103) (0.083) (0.464) (0.186) 
Self-care > 3 0.335*** 0.304*** 0.099 0.272 -0.525** 
 (0.080) (0.102) (0.077) (0.528) (0.206) 
Usual activities > 3 0.255*** 0.232*** 0.092 -0.220 -0.610*** 
 (0.064) (0.083) (0.062) (0.421) (0.172) 
Pain/discomfort > 3 0.734*** 0.528*** 0.446*** 0.475 -0.382* 
 (0.074) (0.102) (0.075) (0.366) (0.220) 
Anxiety/depression > 3 0.436*** 0.370*** 0.258*** 0.418 -0.026 
 (0.072) (0.094) (0.071) (0.309) (0.204) 
Misery index 0.037** 0.023 0.036** 0.123 0.037 
 (0.018) (0.024) (0.017) (0.121) (0.051) 
Mild state (misery = 6) -0.347*** -0.012 -0.568*** -4.473*** - 
 (0.116) (0.187) (0.157) (0.919) - 
Age 0.005 0.009** 0.002 0.018** 0.007 
 (0.004) (0.004) (0.003) (0.008) (0.005) 
Male -0.002 -0.089 -0.165* -0.004 0.017 
 (0.096) (0.111) (0.085) (0.200) (0.139) 
Never married 0.162 0.427*** -0.104 -0.236 -0.028 
 (0.125) (0.150) (0.109) (0.288) (0.171) 
Religion 0.089 0.196 -0.036 -0.302 -0.026 
 (0.108) (0.131) (0.094) (0.244) (0.157) 
Ethnic minority 0.212 0.088 0.366** -0.946*** 0.491** 
 (0.184) (0.195) (0.163) (0.307) (0.233) 
Limiting disability -0.027 -0.007 -0.264** -0.224 0.197 
 (0.163) (0.165) (0.129) (0.347) (0.164) 
Degree -0.096 0.155 -0.227** 0.178 0.024 
 (0.122) (0.138) (0.105) (0.267) (0.155) 
Children 0.067 -0.027 -0.299*** 0.158 0.136 
 (0.114) (0.135) (0.103) (0.227) (0.145) 
Experience of caring -0.137 -0.237** -0.060 0.536*** 0.028 
 (0.100) (0.116) (0.081) (0.191) (0.135) 
English not native 
language 

0.327 0.242 0.080 1.548*** -0.504 

 (0.230) (0.255) (0.206) (0.355) (0.344) 
TTO problems -0.258*** -0.063 -0.013 -0.040 -0.091 
 (0.095) (0.108) (0.082) (0.181) (0.122) 

Elapsed time 
1.365 -2.672 -1.860 1.172 -6.943** 
(1.414) (1.893) (1.341) (4.372) (3.431) 

Variance of random effect 
1.440*** 
0.161) 

1.259*** 
(0.236) 

0.892*** 
(0.104) 

0.025 
(0.322) 

0.254 
(0.177) 

No. individuals 986 986 986 860 950 
No. of TTO tasks 7,100 7,100 8,874 1,705 2,507 

Standard errors in parentheses.  Statistical significance: * = 10%, ** = 5%, *** = 1%. Initial values and individual 
means of covariates are also included (see Wooldridge 2005) 
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2.7   The DC experiments 

The design of the DC experiments give much less scope for assessing data validity than does the 

TTO design. There are two reasons for this: 

 The DC choice situations presented to participants all involve choices between states that 

cannot be ordered unambiguously a priori : for example, no-one is asked to rank 11122 against 

a logically inferior state like 33234. Consequently, logically fallacious responses are ruled out 

as part of the experimental design. If a participant were unable to make logically consistent 

comparisons, we would never be aware of it. 

 The individual is required to make a definite choice and there is no provision for responses 

like “states A and B roughly equivalent”, or “don’t know” or “unable to judge”. When faced with this 

situation, some participants may follow the policy of making a random choice – which would 

be a valid response in cases of indifference between the two states. But others might resolve 

the difficulty by following an arbitrary policy, such as always picking alternative A. The latter 

type of problematic response behaviour would go undetected. 

The only clear test that we can make on the DC data is a test of the assumption of statistical 

independence within the sequence of seven tasks undertaken by each participant. Table 2.10 

shows results from a simple dynamic model:  

Pr(𝑐𝑖𝑡 = 1)  = 𝛼𝑐𝑖𝑡−1 + 𝛽1(𝑀𝑜𝐴𝑖𝑡 − 𝑀𝑜𝐵𝑖𝑡) + 𝛽2(𝑆𝑐𝐴𝑖𝑡 − 𝑆𝑐𝐵𝑖𝑡) + 𝛽3(𝑈𝑎𝐴𝑖𝑡 − 𝑈𝑎𝐵𝑖𝑡)

+ 𝛽4(𝑃𝑑𝐴𝑖𝑡 − 𝑃𝑑𝐴𝑖𝑡) + 𝛽5𝑀𝑖𝑠𝐴𝑖𝑡 + 𝛽6𝑀𝑖𝑠𝐵𝑖𝑡 + 𝛽7𝑡 +  𝛽8  + 𝑢𝑖

+ 𝜀𝑖𝑡               for 𝑡 = 2 … 7                                                                                       (3) 

where 𝑐𝑖𝑡 is a binary indicator of individual i choosing state B rather than A in task t and 

subscripts A and B indicate alternative states A and B. Table 2.10 shows the estimates of 

parameters 𝛼 and 𝛽1 … 𝛽8, obtained using the Wooldridge (2005) method of allowing for the 

endogeneity of the lagged dependent variable 𝑐𝑖𝑡−1 and initial condition 𝑐𝑖0 in short panel 

estimation.  

Unlike the TTO experiments, there is no evidence of any statistical dependence between the 

outcomes, nor of any systematic association with the position of the task within the sequence. 

We also find no evidence of a persistent individual effect, since 𝑣𝑎𝑟(𝑢𝑖) is estimated as 

essentially zero. Consequently, the independence assumption made by Devlin et al. (2018) seems 

reasonable for the DC data. 
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Table 2.10  Dynamic modelling of sequences of responses in DC 
experiments 

Covariate 
Coefficient  
(standard error) 

Alternative B chosen in previous task (𝑐𝑖𝑡−1) -0.024 

 (0.036) 

Mobility difference (𝑀𝑜𝐴𝑖𝑡 − 𝑀𝑜𝐵𝑖𝑡) -0.031** 

 (0.013) 

Self-care difference (𝑆𝑐𝐴𝑖𝑡 − 𝑆𝑐𝐵𝑖𝑡) -0.085*** 

 (0.012) 

Usual activities difference (𝑈𝑎𝐴𝑖𝑡 − 𝑈𝑎𝐵𝑖𝑡) -0.102*** 

 (0.012) 

Pain/discomfort difference (𝑃𝑑𝐴𝑖𝑡 − 𝑃𝑑𝐴𝑖𝑡) 0.004 

 (0.012) 
Misery index for state A  0.220*** 
 (0.010) 
Misery index for state B -0.237*** 
 (0.010) 
Position in sequence (t ) 0.005 
 (0.010) 
Intercept -2.337*** 
 (0.982) 

Statistical significance: * = 10%, ** = 5%, *** = 1%. Initial values and individual 
means of covariates are also included (see Wooldridge 2005) 
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SECTION 3: SPECIFICATION AND ESTIMATION OF THE 
VALUATION MODEL 

In this section, we investigate the consistency of the model specification and the reliability of the 

estimated model parameters which underpin the Devlin et al. (2018) value set for England. 

 

3.1 Specification issues 

In this review, we concentrate primarily on the final model estimated by Feng et al. (2018), which 

was used to construct the proposed value set in Devlin et al. (2018). Appendix A2.1 presents that 

model, based primarily on the WinBUGS code supplied, since published papers only provide an 

incomplete mainly verbal account of the model. The model assumes that there is a shared utility 

function underlying TTO and DC responses. This assumption allows estimation of a common 

set of parameters for the combined dataset. Twenty parameters (5 dimensions × 4 levels) 

measure the utility decrements from full health (all EQ-5D-5L dimensions at level 1). It is 

assumed that there are three distinct latent groups of individuals in the population with 

unobserved group membership. Each latent group shares the same underlying decrements in 

utility up to a proportionality constant, which Feng et al. (2018) termed a disutility scale. The 

degree of randomness in the TTO responses (the variance of the error terms) is allowed to differ 

across latent groups.  

In arriving at this final model, Feng et al. (2018) estimated a sequence of models and 

specifications using TTO responses in isolation and combined with DC responses. Some of 

these preliminary models exhibit inconsistencies where the decrements in utility are higher for 

level 4 (severe) than for level 5 (extreme) in the usual activities and the anxiety/depression 

dimensions (these problems are consistent with the TTO data quality concerns detailed in 

Section 2). The final specification imposes restrictions on the parameters that force decrements 

in utility to conform to the expected level ordering. 

The TTO valuation protocol can only produce 41 discrete values, from v = -1 to 1 in steps of 

0.05. Feng et al. (2018) handle this discreteness by assuming that the true TTO response is only 

observed as the interval of radius 0.025, centred around the TTO response. Furthermore, TTO 

responses are assumed censored10 at 3 possible values, -1 (respondents might have traded more 

                                                 
 
10 Censoring occurs when a variable is only partially observed; the exact value is unobserved but we know that its 
value is at or beyond a limit. 
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time in full health if given the choice), 0 (respondents avoid using values below 0) and 1 (full 

health)11.  

DC responses are modelled using a binary logit model where it is assumed that the health state 

with the highest utility is chosen. DC responses only give rankings – they provide information 

about preferences but not their strength. For this reason, the parameters identified using DC and 

TTO data may differ in scale. To align the parameters, Feng et al. (2018) introduce a linear 

transformation for the parameters modelling the DC responses. 

To complete the model, individual responses to tasks are assumed independent within each set 

of TTO and DC tasks as well as across them, conditional on latent class membership. An age-

specific calibration weight is also used in the estimation (see Appendix 2.1 for details). 

There are several significant concerns about the specification of this model, which are 

summarised in Table 3.1. The consequences of model misspecification are uncertain, but Table 

3.1 indicates some of the possibilities. 

  

                                                 
 
11 Due to the interval treatment of the data, the bottom and top censoring values used are -0.975 and 0.975 instead 
of -1 and 1. 
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Table 3.1  Potential concerns in the specification of the valuation model 

Issue Nature of problem Potential consequences 

Inadequate allowance 
for poor quality TTO 
responses 

There is strong evidence (see section 2.6) of 
widespread lack of engagement with TTO 
experiments or inability to carry out TTO 
tasks coherently. Apart from a proportionately 
small number of sample adjustments, the 
model assumes that all TTO responses are 
accurate within the resolution of the 
measurement software. 

Potentially serious biases 
in parameter estimates 
and valuation predictions 

Inappropriate 
interpretation of limit 
at v = 1 as censoring 

Valuations exceeding 1.0 are deemed possible 
but unobserved because of a censoring 
process. In fact valuations above 1 are ruled 
out theoretically, and the upper bound should 
be modelled as an inherent limit, not as 
censored observation. 

No implications for 
estimates of model 
parameters, but systematic 
over-valuation, 
particularly of mild health 
states. 

Heteroskedasticity 
assumption 

TTO valuations are assumed heteroskedastic, 
with error variance proportional to a weight 
which is calculated as a calibration weight 
aligning the sample and population age 
composition. This confuses weighting for 
nonresponse and weighting for 
heteroskedasticity, which are two different 
statistical procedures, intended to address 
different statistical problems. 

Overstatement of 
estimation precision and 
possible bias in parameter 
estimates 

Independence of 
TTO tasks  

Evidence in section 2.6 suggests that there is 
strong statistical dependence between the set 
of TTO responses made by any individual 
(conditional on latent class membership).  

Overstatement of 
estimation precision, since 
the TTO sample contains 
less independent 
information than standard 
methods assume.  

Inconsistency of 
distributional 
assumptions 

Utility error terms assumed heteroskedastic 
and normally distributed in TTO experiments 
but homoskedastic and type I extreme value 
in DC experiments 

Bias in parameter 
estimates 

Intercept in DC 
model 

Intercept in DC choice probability is 
interpretable as a difference between 
alternative-specific intercepts in the utility 
functions for the states being compared. It is 
mathematically impossible for all differences 
between a set of constant intercepts to have 
the same value. 

Bias in parameter 
estimates 
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3.2  Bayesian estimation 

Feng et al. (2018) estimate the model in WinBUGS (Lunn et al., 2000), widely-used software for 

Bayesian analysis of statistical models, using Markov chain Monte Carlo (MCMC) methods. The 

Bayesian approach involves statistical inference based on a posterior distribution for the model 

parameters. The posterior distribution combines sample information (captured by the likelihood 

function) with other external information (captured by the prior distribution). The MCMC 

method does not calculate the posterior parameter distribution directly, instead it generates a 

sequence of values which eventually display the properties of random draws from the posterior 

distribution. 

WinBUGS makes the estimation of many complex models relatively straightforward but reliable 

inferences require significant input from the user including careful consideration of prior 

distributions, the model and computation issues. Warnings on the WinBUGS website 

(https://www.mrc-bsu.cam.ac.uk/software/bugs/) and the first page of the WinBUGS User 

Manual alert users to the potential pitfalls (see Figure 3.1).  

“Health warning 

The programs are reasonably easy to use and come with a wide range of examples. 

There is, however, a need for caution. A knowledge of Bayesian statistics is assumed, 

including recognition of the potential importance of prior distributions, and MCMC is 

inherently less robust than analytic statistical methods. There is no in-built protection 

against misuse.” 

(https://www.mrc-bsu.cam.ac.uk/software/bugs/) 

“Beware: MCMC sampling can be dangerous!” (WinBUGS User Manual Version 1.4) 

 

Figure 3.1 Warnings on the WinBUGS website and User Manual. 
 

Following specification of the full probability model (discussed in section 3.1 and Appendix 2.1), 

Bayesian data analysis involves (i) stating one’s beliefs about the model parameters using prior 

probability distributions and; (ii) drawing inferences from the posterior distribution of the model 

parameters given the observed data. Issues (i) and (ii) are addressed in sections 3.2.1 and 3.2.2. 

 

3.2.1  Specification of prior distributions 

Priors reflect the information available before examining the data. When no information is 

available, noninformative priors are specified so that inferences are mainly based on the current 

https://www.mrc-bsu.cam.ac.uk/software/bugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/
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dataset. Given the potential impact of the priors on the results, it is important to state them 

explicitly and justify their choice. In the case of noninformative priors, it is prudent to assess the 

sensitivity of the results to the choice of priors to ensure that they play a minimal role. The priors 

used by Feng et al. (2018) are detailed in Appendix 2.2.  

One important concern is the origin of the priors used in estimation. We were able to find no 

justification for the choice of priors in the published papers, nor any evidence of sensitivity 

analysis in the materials we received. Feng et al. (2018) state that “[the excluded data] were not 

used to define the prior probability distributions in the Bayesian regression analysis”. We are not 

clear what exactly was meant by this and we could not find any indication of the source of the 

priors. 

A second major concern is that some parts of the prior distribution appear to be both highly 

informative and in conflict with sample information. This is particularly true for the latent class 

aspect of the model, where the choice of priors is even more important than in standard models. 

Priors can help overcome some of the well-known difficulties in estimating these models by 

maximum likelihood, but they need to be selected carefully, as they may exercise considerable 

influence on the posterior distribution (Frühwirth-Schnatter, 2006). In particular, the prior 

distribution relating to the probabilities of latent class membership appears informative but is 

not justified. Priors for the TTO error variances appear to be in conflict with the data for some 

latent classes, since there are very large differences between prior and posterior means for those 

parameters.  

3.2.2  Implementation of the simulation estimator 

In Bayesian analysis, it is important to pay careful attention to the parameterisation of the model 

and check convergence diagnostics. The MCMC algorithm can be run for a set number of 

iterations and will produce results. However, for reliable inferences, it is critical to ensure that 

convergence to a stationary distribution has taken place and then decide on the number of 

additional Monte Carlo samples required to obtain the necessary precision.  

It is helpful to choose a parameterization of the model that ensures reasonably quick 

convergence of the algorithm. If convergence problems cannot be solved by increasing the 

number of samples, then it is possible that a reparameterization or even different specification of 

the model is needed. There are two issues related to the parameterization of the model used in 

Feng et al. (2018) which deserve attention. 

A model with three proportionality constants for the three latent classes is unidentified. Setting a 

strong prior (see Appendix A2.2) does not solve the problem and a normalising restriction is 
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needed. Although this type of identification does not bias predictions, it may lead to convergence 

problems.  

Consistency of the valuation process requires that the statistical model should give lower values 

as the severity indicator in any domain rises. This was found to be a problem for the increase 

from level 4 to level 5 for two of the EQ-5D domains. Consistency was imposed on the model 

by specifying utility decrements as the squares of basic parameters (since a square can never be 

negative). It is unclear why this approach was used since, in a Bayesian framework, it would 

arguably be more natural to use the prior distribution to impose the restriction.12 The drawback 

of using a squared term is that the sign of the underlying parameter is indeterminate; this can 

induce convergence problems for MCMC as the samples in the chain switch from positive and 

negative values, producing a bimodal distribution for the parameter. 

In addition, the difficulties of identifying mixture distributions (such as the one used here to 

model latent classes) are well known (McLachlan and Peel, 2000).  The Bayesian approach has 

some practical difficulties, particularly label switching, which may arise because the mixture 

distribution is invariant to interchanging the order of the components. Label switching has to be 

addressed explicitly because, in the course of sampling from the mixture posterior distribution, 

the ordering (labelling) of the unobserved categories may change (Frühwirth-Schnatter, 2006). 

Feng et al. (2018) report using a single chain with a burn-in of 2,000 iterations and 5,000 

additional iterations to compute the posterior distributions. Convergence is reported to be 

assessed using (i) visual inspection of the autocorrelation graphs and (ii) assessing whether the 

last 2,000 iterations gave the same estimates (to within +/- 0.01) as the previous 2,000 iterations. 

It is unclear whether this was carried out for all parameters or a subset, as we found no record of 

these checks in the documentation provided. A uniform +/- 0.01 tolerance for all parameters is 

inadvisable as some estimated means are large (e.g. 18.9) but others are small – several much 

smaller than 0.02. We re-ran estimation of the model as reported and saved the output to assess 

convergence using the CODA package.13 A warning message appears on loading the CODA files 

produced by WinBUGS (see Figure 3.2), indicating a lack of convergence. 

                                                 
 
12 In the conclusion, Feng et al. (2018) report the following “…we formulated the prior distributions of the level 
parameters to guarantee that in each dimension, the coefficients between two adjacent levels are logically 
consistent”. However, in the material we received, there appears to be no prior distributions incorporating this 
information; the restriction is imposed through the model parameterisation. 
13 CODA stands for Convergence Diagnosis and Output Analysis. It is an R package routinely used for the purpose 
of assessing convergence. 
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Figure 3.2: Warning message after loading the CODA files produced by WinBUGS. 
 

We examined different convergence diagnostics and plots provided by CODA for other signs of 

non-convergence but only present here a few examples of evidence which strongly suggests 

convergence failure. Geweke (1992) Z-scores indicate problems of convergence for the two 

parameters (𝛼1 and 𝛼2) of the linear transformation for the DC responses. Raftery and Lewis 

(1992b)’s convergence diagnostic measures the increase in the number of iterations needed to 

reach convergence due to the dependence between the samples of the chain. Raftery and Lewis 

(1992a) suggest values higher than 5 indicate convergence problems. More than half of the 

parameters have values above 5, including parameters which are important for construction of 

the value set. For example, the level 2 decrements give values which are all above 8 and the 

minimum number of iterations reported for them ranges from 30,000 to just above 47,000. The 
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minimum number of iterations to estimate the default 2.5% quartile14 is above 5,000 for all 

parameters except the 3 latent group probabilities which have informative priors. 

Bimodality of the posterior distribution is evident in the parameters governing the level 2 

mobility and anxiety/depression dimensions, pointing towards label switching problems (see 

Figure 3.3).  

 

  

 

 Figure 3.3: Density of the parameters governing the level 2 mobility parameter 
 (b[1]) and anxiety/depression parameter(b[17]) 
 

To ensure that problems are not due to the lack of identifiability of the model or the small 

number of iterations, we re-ran the computations for 60,000 iterations with the missing 

normalisation constraint imposed. We still find significant evidence of lack of convergence. 

Particularly problematic is the parameter 𝛼2 (see Appendix 2.1) linking the TTO and DCE data 

which shows extremely high MCMC autocorrelations even after many lags (see Figure 3.4).  

Table 3.2 summarises our conclusions on the Bayesian analysis: not only do we find clear 

evidence of convergence failure but also more fundamental specification/parametrisation 

problems that cannot be solved by increasing the length of the MCMC chain.  

 

                                                 
 
14 with default probability (0.95) of attaining the default accuracy (±0.005). 
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Figure 3.4: Autocorrelation plot of the parameter linking the TTO and DCE 

responses, 𝜶𝟐. 
 

 

Table 3.2  Potential issues in the Bayesian analysis 

Issue Nature of problem Potential consequences 

Choice of priors Priors on key parameters are informative. 
There is no justification for the priors used or 
sensitivity analysis presented. 

Results dependent on 
priors which may be 
unreliable. 
 

Unidentified model A model with proportionality constants for all 
latent groups is theoretically unidentified. 

No direct implications for 
prediction of utility values, 
but inflated parameter 
uncertainty and problems 
of convergence may 
distort results. 

Parameterization of 
the model 

Specification of some parameters may cause 
problems for the algorithm. 

Slow mixing and 
convergence failure, 
leading to unreliable 
estimates. 

Label switching The labelling of the unobserved categories 
changes when sampling from the mixture 
posterior distribution.  

The posterior marginal 
densities estimated from 
the samples may be poorly 
estimated 

Single vector of initial 
values 

The MCMC sampler could get trapped in a 
spurious mode. 

Inference regarding 
parameters of interest may 
not be reliable 

Convergence failure Insufficient number of iterations to ensure 
convergence to the stationary distribution, 
possibly as a result of inappropriate model 
specification or parametrisation. 

Inference regarding 
parameters of interest may 
not be reliable 
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3.3  Derivation of the value set: prediction of limited and censored variables 

There is an important distinction between two quite different processes that can lead to the same 

distribution of observable data. They are censoring and conceptual limitation. Although these lead to 

exactly the same data distribution (i.e. likelihood function), the appropriate way to predict from 

the fitted model depends on which of the two processes is at work. We use a simple illustrative 

example of a linear regression model. Figure 3.5(a) shows the linear regression function and 

scatter of sample points for a standard regression model. 

Suppose (as is the case for the TTO experiments) that the dependent variable y is exactly 

observed if it takes a value above -1, but the limitations of the TTO measurement process means 

that the outcome is coded as -1 if the true value of y lies below -1. This is known as censoring 

from below at -1. Figure 3.5 illustrates this, using a simulated sample. Panel (a) shows the true 

data on y generated from a linear regression model; in panel (b), the outcomes below -1 (shown 

as yellow triangles) are not observed, instead the outcomes are recorded as the hollow circles at y 

= -1. 

To avoid bias, the estimation process must take account of the pile-up of outcomes at the 

discrete value -1, since otherwise the slope of the relationship will tend to be underestimated. 

Once the censored regression model has been estimated, it is appropriate to predict values of y 

from the straight line relationship, since we are interested in the true values of y (which may lie 

below -1), rather than the censored observations. 
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(a) Data before censoring   

 

(b) Data after censoring  

 Figure 3.5: The linear regression model with censoring at -1: straight-line 
 predictions may correctly lie below -1 
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 Figure 3.6:  The limited (Tobit) regression model with conceptual constraint at 
 +1: the straight-line prediction formula is incorrect and may generate values 
 above 1; the correct conditional expectation predictor always lies below 1 (Pudney 
 1989, p. 141). 

 

The prediction method used by Devlin et al. (2018) uses the straight-line predictor (𝑥𝛽 in 

technical language) which would be quite accurate at the lower limit where values below -1 

cannot be observed because of censoring but also, inaccurately, at the full health level where 

values above +1 are logically impossible. The correct conditional expectation prediction formula, 

E(v|x), is more complex and corresponds to the solid curved line in Figure 3.6. 
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SECTION 4: CONCLUSIONS AND RECOMMENDATIONS 

We undertook a review of the methods used to generate the EQ-5D-5L value set for England. 

With access to the raw data and the code to implement the statistical models, we have 

interrogated the analysis in detail.  

  

In section 2 we examined the raw data in order to understand the challenges faced for the 

subsequent modelling. This examination revealed a number of serious deficiencies in relation to 

the TTO data. These deficiencies lead us to have doubts about the extent to which the 

respondents to these experimental tasks were able to understand what was being asked of them, 

were able to distinguish the health states they were asked to value or engaged in the tasks. We 

found that even casual inspection of the individual-level TTO data revealed immediately that 

much of the data treated as perfectly accurate in the valuation analysis is logically inconsistent or 

otherwise potentially misleading. The same may be true of the DC experiments but the 

experimental design precludes any assessment of data quality.  

 

Our analyses do not allow us to identify the reasons why the data suffer these limitations. It may 

be a consequence of the EuroQoL valuation protocol but there are other potential sources.  The 

valuation analysis performed by Devlin et al. (2018) is based on experimental data generated 

under version 1.0 of the EuroQol valuation protocol (EQ-VT), which has been found to yield 

poor quality data in a number of international applications and in EuroQol’s own in-house 

evaluation. That version of EQ-VT has been superseded in two subsequent revisions of the 

protocol that have led to improvements in some aspects of data quality. However, it should not 

be assumed that the EQ-VT is the sole source of subsequent data limitations. It may be the case 

that there are problems with the descriptive system of 5L itself, the TTO procedure in general as 

a means of valuing health states, or other aspects of the study inter alia, each of which require 

further investigation to inform any potential future new data collection.  

  

In Section 3, we examined the specification and estimation of the valuation model. This process 

identified numerous serious concerns. There are flaws and inconsistencies in the specification of 

the statistical model; Bayesian prior distributions are specified without justification or robustness 

checks; and the simulation procedure used to generate draws from the posterior distribution of 

the model parameters does not meet recommended standards for Bayesian analysis.  
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Many of the identified limitations of the English 5L valuation, both relating to the data generated 

and the subsequent statistical modelling approach, are common with those for other countries.   

4.1  Recommendations to NICE and DHSC on the proposed English value set 

 

R1 A 5L value set for use in policy applications must be based on good quality data. A 

new programme of further development, including a new data collection initiative, 

should be considered to put EQ-5D-5L on a sufficiently firm evidential basis.  

The objections to the proposed value set cannot be overcome by re-analysis of the existing 

experimental data, either taken as a whole or in part. Any new data collection exercise should use 

the opportunity to consider the range of issues set out in this report. It is unlikely that 

implementation of the updated EQ-VT alone gives sufficient consideration to all these issues. 

These issues include sample size and coverage of health states included in the experimental tasks, 

the value of inbuilt checks on data quality in the design including for the DC experiments, 

consideration of the nature of the tasks that respondents are being asked to perform, the number 

and format of these tasks.  Section 2 of our report gives the evidence for this conclusion. 

 

R2 A value set that is to be used in decision making must be based on a statistical 

modelling process that is robust and fit for purpose. If new data is collected, the 

statistical analysis should not simply replicate the analysis that has been reviewed here.  

There are numerous, serious concerns about the quality of the statistical modelling process that 

underpins the proposed value set. These concerns cover several important aspects: the 

specification of the statistical model, the use of Bayesian prior distributions, and the simulation 

procedure used to estimate model parameters. These and other concerns are set out in detail in 

section 3 of the report. 

 

4.2  General recommendations 

Two further recommendations relate to general research issues arising from our review. They are 

intended to inform wider decisions by NICE and DHSC relating to research on the valuation of 

EQ-5D-5L health states. 
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R3 This review has demonstrated the value of in-depth assessment for research 

findings which are critical to policy. The academic peer review system cannot provide 

the depth of review that is required to comply with the recommendations of 

MacPherson, since journal referees do not have access to underlying data or computer 

codes, nor do they have the time or professional incentive to review in full detail. 

Additionally, for policy research such as this, which involves complex statistical modelling, it 

would be reasonable to expect the specification and conduct of statistical work to additionally be 

validated by publication in a statistical or econometric journal which uses specialist statistical 

reviewers.  

R4 It is good practice in scientific research for all relevant evidence to be made freely 

available to facilitate replication and secondary studies. This is even more important 

when the evidence underpins critical policy decisions. Full datasets, coding scripts and 

statistical analyses should be open to scrutiny to the fullest extent possible, within the 

bounds set by the need to protect personal information and respect research ethics.  

The data used here (which was partly publicly funded by the Department of Health and Social 

Care) should be properly documented and made available without restriction to the research 

community under the auspices of a body like the UK Data Archive. Any future dataset 

considered for decision making in the UK health service should follow these same principles, 

making data and analyses available immediately upon completion of the research and prior to 

policy decisions being made.   
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APPENDICES 

A1    Materials accessed in the review 

We were supplied with a range of materials by the authors of the proposed value set, who also 

responded to a request for further clarification. These materials included data files with 

accompanying variable lists, and computer code. We also derived some information from pre-

publication versions of the published sources. 

 

A1.1  Data files 

Five data files were supplied to us in text format: 

 respUK1000.txt:  containing original data on the personal characteristics and 

experimental assignment of 999 individuals (the file has 1,000 data rows, but all entries 

for row 344 are coded “NA”) 

 respUKweight.txt:  containing information on a range of personal characteristics 

of 999 individuals, together with a weight variable. This appears to contain a subset of 

the variables in the original data file with row 344 deleted. The origin of the weight 

variable is unclear; it is not documented and appears not to have been used in the 

published analysis. 

 ttoUK1000.txt:  containing the results of ten TTO tasks for each of 1,000 

individuals. It appears that the individual occupying row 344 of file respUK1000.txt 

carried out the full set of TTO tasks but did not supply personal details. 

 dceUK1000.txt:  containing the results of seven DC tasks for each of 996 

individuals 

 englandwales.txt: containing the age/gender breakdown of the England and Wales 

population in mid-2015, derived from population data from the Office for National 

Statistics.   

Accompanying these data files were:  

 a description of the files and a spreadsheet describing the variables covered by the 

datasets 

 interviewer instructions and the slides that had been used in interviewer briefings 

We also requested and received data files from the pilot study (n = 49) conducted prior to the 

main experiments. 
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A1.2  Programme code 

We received the following files: 

 82 different BUG model specification files   

 6 R files which process the BUG files in batches 

 one excel file containing summary results of the estimated models. 

 

A1.3  Unpublished sources 

Devlin, N., Shah, K. K., Feng, Y., Mulhern, B. and Van Hout, B. (2016). Valuing health‐related 

quality of life: An EQ‐5D‐5L value set for England  Health Economics & Decision Science 

(HEDS) Discussion Paper Series No. 16.02. 

Feng, Y., Devlin, N., Shah, K. K., Mulhern, B. and Van Hout, B. (2016). New methods for 

modelling EQ‐5D‐5L value sets: An application to English data. Health Economics & Decision 

Science (HEDS) Discussion Paper Series No. 16.03. 
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A2  Technical aspects of the specification of the valuation model  

A2.1   The algebraic form of the valuation model 

For simplicity, we postpone consideration of three complications: the censoring of TTO 

observations at v = -1; the upper limit of values at v = +1; and the observation of TTO timings 

only to the nearest 0.5 years. Initially, we treat the value v as an unbounded, continuously 

variable, accurately observed quantity.  

Note that the algebraic notation used by Devlin et al. (2018) and Feng et al. (2018) is not fully 

consistent, so we use our own notation here. 

First consider the TTO data. The econometric model of the value v is a latent class regression 

model with the following features. 

𝑣𝑖𝑡 = 1 −  𝛾𝑖[∑ ∑ 𝛽𝑑𝑘𝑥𝑖𝑡𝑑𝑘
5
𝑘=2

5
𝑑=1 ] +  𝜀𝑖𝑡                                                                    (1) 

𝛾𝑖 =  𝛾𝑐    with probability 𝑝𝑐 for 𝑐 = 1 … 3                                                                (2) 

where 𝑝1 … 𝑝3 are non-negative constants summing to 1 and: 

 𝑖 = 1 … 𝑁 indexes individual participants 

 𝑡 = 1 … 10 indexes TTO tasks 

 𝑑 = 1 … 5 indexes the five health domains covered by EQ-5D 

 𝑘 = 1 … 5 indexes individual the five severity levels of EQ-5D in each domain 

 𝑐 = 1 … 3 indexes the three latent classes of response style 

The covariate 𝑥𝑖𝑡𝑑𝑘 is a binary variable taking the value 1 if the health state presented to 

participant i in task t has domain d set at level k. 

The conditional distribution of the error terms is specified to have the following normal 

distribution within latent class c: 

𝜀𝑖𝑡 | 𝒙𝑖, 𝛾𝑖~ 𝑁 (0,
𝜎𝑐

2

𝑤𝑖
)  ,                                                 (3) 

where 𝒙𝑖 is shorthand for {𝑥𝑖𝑡𝑑𝑘 , 𝑡 = 1 … 10, 𝑑 = 1 … 5, 𝑘 = 1 … 5} and 𝑤𝑖 is the age-specific 

weight constructed as the ratio of the population to sample proportion of respondent i’s age 

group.  

The dependence of the variance of 𝜀𝑖𝑡𝑐 on 𝑤𝑖 is described by Feng et al. (2018) as a model of 

heteroscedasticity, but this is a definite flaw in the specification, since the construction of 𝑤𝑖 is 

dependent on a sample statistic. The interpretation would be that the degree of randomness in 
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participant i ’s response behaviour is related to the number and type of individuals that were 

recruited for the experiments – which is an indefensible assumption. 

The TTO component of the model is completed by an assumption that responses are statistically 

independent, across individuals and across the ten TTO tasks for any given individual. This 

allows the likelihood for all tasks to be constructed as a product of the marginal likelihood for 

each task individually. Independence across individuals is a reasonable assumption which is 

automatically satisfied by random sampling procedures. However, independence between tasks 

within individuals is a strong assumption which appears untenable on the basis of results in 

section 2.6 (see Table 2.9). 

Under these assumptions, the likelihood function for the individual i based purely on TTO data 

is: 

𝐿𝑖
𝑇𝑇𝑂 = ∑ 𝑝𝑐 ∏

1

𝜎𝑐 √𝑤𝑖⁄
𝜑 (

𝑣𝑖𝑡 − 1 − 𝛾𝑐[∑ ∑ 𝛽𝑑𝑘𝑥𝑖𝑡𝑑𝑘
5
𝑘=2

5
𝑑=1 ]

𝜎𝑐 √𝑤𝑖⁄
)

10

𝑡=1

3

𝑐=1

                     (4) 

where 𝜑(. ) is the density function of the N(0, 1) distribution. 

The DC responses are modelled using a binary discrete choice framework. Given the tth DC task 

of ranking two health states A and B, characterised by EQ-5D health descriptors 𝑥𝑖𝑡𝑑𝑘
𝐴  and 

𝑥𝑖𝑡𝑑𝑘
𝐵 , individual i ranks state A above state B if: 

                                             𝑣𝑖𝑡
𝐴 −  𝑣𝑖𝑡

𝐵 > 0                                                                  (5) 

where 𝑣𝑖𝑡
𝐴 and 𝑣𝑖𝑡

𝐵  are the subjective values assigned to states A and B. To allow both TTO and 

DC data to contribute to a common valuation, 𝑣𝑖𝑡
𝐴 and 𝑣𝑖𝑡

𝐵  are assumed to be related to the 

characteristics 𝑥𝑖𝑡𝑑𝑘
𝐴  and 𝑥𝑖𝑡𝑑𝑘

𝐵  in the same way as in the TTO experiments, via equation (1). If 

TTO and DC states are valued in exactly the same way, this would imply:  

                𝑣𝑖𝑡
𝐴 −  𝑣𝑖𝑡

𝐵 =  𝛾𝑖[∑ ∑ 𝛽𝑑𝑘(𝑥𝑖𝑡𝑑𝑘
𝐵 − 𝑥𝑖𝑡𝑑𝑘

𝐴 )5
𝑘=2

5
𝑑=1 ] +  (𝜀𝑖𝑡

𝐴 − 𝜀𝑖𝑡
𝐵)                    (6) 

Making assumption (3) about the heteroskedastic normality of the random errors 𝜀𝑖𝑡
𝐴 and 𝜀𝑖𝑡

𝐵 , this 

would give a heteroskedastic probit model for ranking of A versus B, since 𝜀𝑖𝑡
𝐴 − 𝜀𝑖𝑡

𝐵~𝑁 (0,
2𝜎𝑐

2

𝑤𝑖
). 

However, Devlin et al. (2018) differ from this in two ways:  

(i )  The error distribution in (6) is assumed to be homoskedastic and logistic, which would imply 

that 𝜀𝑖𝑡
𝐴 and 𝜀𝑖𝑡

𝐵 have type I extreme value distributions (Pudney 1989, appendix 1). This conflicts 

with the heteroskedastic normal distribution (3) assumed for utilities in the TTO experiments. It 
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would be entirely feasible to maintain the normality assumption for the DC experiments, so it is 

unclear why this switch of distributional assumption was made. It introduces a complication over 

scaling, since the standard logistic and normal distributions have different variances. 

(ii )  A linear transformation is introduced into the utility difference: 

          𝑣𝑖𝑡
𝐴 −  𝑣𝑖𝑡

𝐵 =  𝛼1 + 𝛼2𝛾𝑖[∑ ∑ 𝛽𝑑𝑘(𝑥𝑖𝑡𝑑𝑘
𝐵 − 𝑥𝑖𝑡𝑑𝑘

𝐴 )5
𝑘=2

5
𝑑=1 ] +  (𝜀𝑖𝑡

𝐴 − 𝜀𝑖𝑡
𝐵)             (7) 

There are two difficulties with this:  

 There is no mathematical basis for the intercept 𝛼1. If expression (6) is the difference 

between two utilities, then the intercept 𝛼1 must be the difference between two state-

specific intercepts: 𝛼1 = 𝛼1
𝐴 − 𝛼1

𝐵. But 𝛼1 is specified as a constant across all pairwise 

comparisons, which means that all state specific intercepts 𝛼1
𝐴, 𝛼1

𝐵 etc. must differ from one 

another by a universal constant. This is mathematically impossible, unless 𝛼1 = 0. 

 The slope coefficient 𝛼2 is interpreted as a scale factor adjusting for the difference in scaling 

of the normal TTO errors (3) and the logistic error differences in (7). However, that 

interpretation would require 𝛼2 to be heteroskedastic across individuals i and to differ 

across latent classes c. Instead, it is specified as a constant. 

Define Y𝑖𝑡 as a binary variable equal to 1 if individual i rates state A as better than state B in DC 

task t, and 0 otherwise. Then, under the assumptions of Devlin et al. (2018), the (unweighted) 

likelihood for the seven DC tasks undertaken by individual i would be: 

𝐿𝑖
𝐷𝐶 = ∑ 𝑝𝑐 ∏ 𝑃𝑖𝑡

𝑐 Y𝑖𝑡(1 − 𝑃𝑖𝑡
𝑐 )1−Y𝑖𝑡

7

𝑡=1

3

𝑐=1

                                              (8) 

where 𝑃𝑖𝑡 is the logit probability: 

𝑃𝑖𝑡
𝑐 =

𝛼1 + 𝛼2𝛾𝑐[∑ ∑ 𝛽𝑑𝑘(𝑥𝑖𝑡𝑑𝑘
𝐵 − 𝑥𝑖𝑡𝑑𝑘

𝐴 )5
𝑘=2

5
𝑑=1 ]

1 + 𝛼1 + 𝛼2𝛾𝑐[∑ ∑ 𝛽𝑑𝑘(𝑥𝑖𝑡𝑑𝑘
𝐵 − 𝑥𝑖𝑡𝑑𝑘

𝐴 )5
𝑘=2

5
𝑑=1 ]

                                 (9) 

Devlin et al. (2018) make the further assumption that, conditional on latent class membership, 

individuals’ behaviour in the TTO and DC tasks are independent. They also introduce the 

calibration weights 𝑤𝑖 into the DC likelihood, to give an overall likelihood: 

𝐿𝑖 = ∑ 𝑝𝑐 {∏
1

𝜎𝑐 √𝑤𝑖⁄
𝜑 (

𝑣𝑖𝑡 − 1 −  𝛾𝑐[∑ ∑ 𝛽𝑑𝑘𝑥𝑖𝑡𝑑𝑘
5
𝑘=2

5
𝑑=1 ]

𝜎𝑐 √𝑤𝑖⁄
)

10

𝑡=1

                                   

3

𝑐=1
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×  ∏ 𝑃𝑖𝑡
𝑐 𝑤𝑖Y𝑖𝑡(1 − 𝑃𝑖𝑡

𝑐 )𝑤𝑖(1−Y𝑖𝑡)

7

𝑡=1

}                        (10) 

Note that this involves the weights 𝑤𝑖 being used in two conflicting ways – as adjustments for 

heteroskedasticity in the TTO component and for sample post-calibration in the DC 

component. 

 

A.2.2 Bayesian priors for the valuation model15 

Feng et al. (2018) report the following priors: 

 a normal prior N(0.1, 1) is assumed for each of the five level 2 coefficients (𝛽12 … 𝛽52) 

 The coefficients for the remaining levels 3 to 5 (𝛽13 … 𝛽55) are constrained to impose 

consistency. Each is built as the coefficient for the previous level plus a squared 

parameter:   𝛽𝑑𝑘 = 𝛽𝑑𝑘−1 + 𝜃𝑑𝑘
2
 , which ensures that 𝛽𝑑𝑘 ≥ 𝛽𝑑𝑘−1 for each domain d 

and levels k = 3 ... 5. A normal prior N(0.01, 1) is assumed for each of the 15 parameters 

𝜃𝑑𝑘 . 

 Normal priors N(0, 10) and N(1, 100) are assumed for the intercept 𝛼1 and slope 𝛼2 of  

the linear transformation introduced to combine the DC and TTO responses. 

 Gamma priors are used for the proportionality constants 𝛾𝑐 for the three latent groups. 

The prior for 𝛾1 is Γ(1,000, 1,000); for the remaining two groups, priors Γ(0,1, 0,1) are 

used. 

 The probabilities of latent class membership 𝑝𝑐 are given a Dirichlet prior 

Dir(0.3,0.3,0.4) 

Not reported in Feng et al. (2018), Gamma priors Γ(0.1,0.1) for the three precision parameters 

(1/𝜎𝑐
2) of the three latent groups are also assumed. 

For several parameters, it is difficult to justify the assertion that these priors are non-informative. 

It is good practice to carry out sensitivity analysis to investigate the role of each prior in 

determining the final estimates. The following issues seem particularly important: 

                                                 
 
15 In this appendix, we refer to the normal distribution characterised using its mean and variance. Note that in 

WinBUGS the normal distribution is parameterised using its mean and precision (reciprocal of the variance). Feng et 
al. (2018) report the parameterization inconsistently sometimes using the WinBUGS convention and at other times 
reporting the variance. 
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 Priors relating to parameters determining latent groups need to be chosen very carefully. 

Selecting a prior on precision parameters imposes structure on the variances. Priors can 

help avoid spurious local modes which plague latent class models but may exercise 

considerable influence on the posterior distribution (Frühwirth-Schnatter, 2006).The 

priors chosen for the precision parameters of the three latent groups (1/𝜎𝑐
2) seem to be 

at odds with the data as some of the posterior mean values would occur with near zero 

probabilities according to the priors. The mean and the variance of the prior distributions 

for 1/𝜎𝑐
2 are 1 and 10 respectively but the posterior means of two of the precision 

parameters are 9.5 and 18.9. This apparent conflict is not discussed in the published 

papers and we have no evidence that any sensitivity analysis has been carried out. 

 There is no clear justification for using the vector (0.3, 0.3, 0.4) as the parameters of the 

Dirichlet prior for the probabilities of group membership. The Dirichlet parameters can 

be any positive numbers and do not have to sum to one (indeed, their sum can be used 

as a measure of their informativeness of the prior distribution). If there is no prior 

knowledge about the components one could use a symmetric Dirichlet with the same 

value for all three parameters, such as (1,1,1). Sensitivity analysis with different priors is 

recommended. 

 


