Tirer parti de toute l'information en économie de la santé : Introduction aux outils statistiques bayésiens.

Avancées récentes Les méta-analyses multi-traitements

Séminaire JEM SFES : Paris, 26 janvier 2012

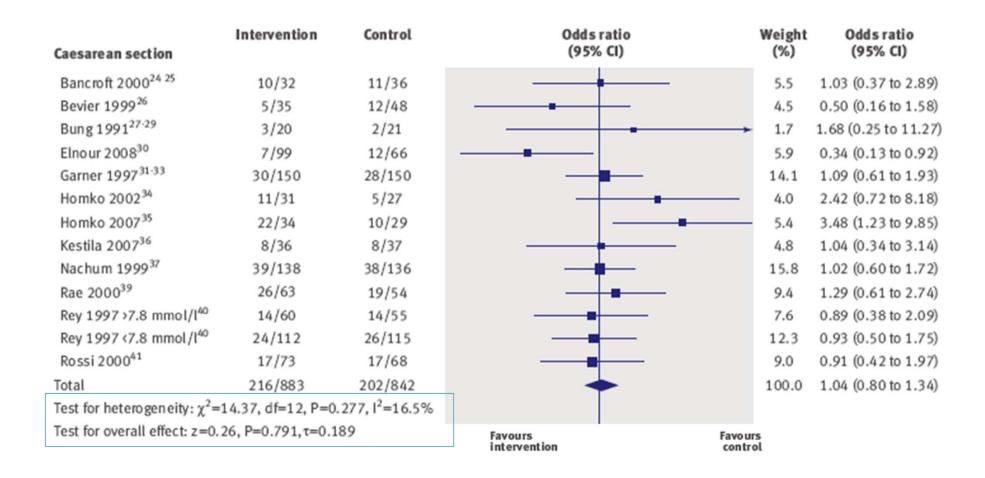
Sibilia Quilici gmail.com

Agenda

- Introduction
- Principes & Hypothèses sous-jacentes
- Approche Bayésienne
- Application
- Discussion

Introduction (1) De la comparaison directe à la comparaison indirecte

Méta-analyses en comparaison directe



Propriétés des méta-analyses en comparaison directe

Propriétés

- Optimisation des essais déjà réalisés
- Économie de moyen et de temps
- Gagner en puissance
- Réutilisation des résultats à des fins de modélisation économique
- Outil d'aide à la décision

Gestion hétérogénéité / biais

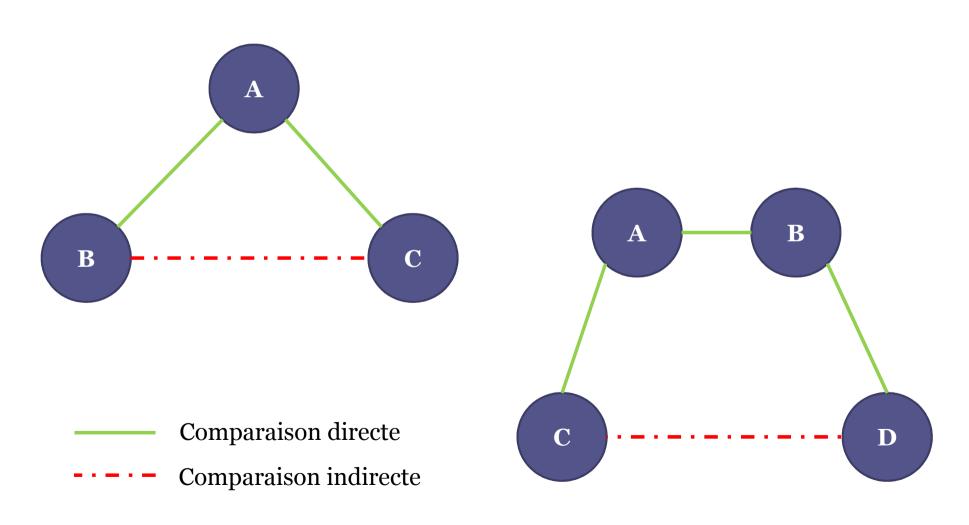
Hétérogénéité

- Plots
- Tests (Q, I²)
- Effets fixes vs. Effets aléatoires
- Méta-régression
- Révision des critères de sélection
- Analyse de sous-groupe

Biais

- « Funnel plots » + Egger 's test
- Trim & Fill non-parametric method

De la méta-analyse en comparaison directe à la comparaison indirecte



Propriétés des méta-analyses en comparaison indirectes

Hypothèses

- Homogénéité
- Similitude
 - Clinique
 - Méthodologique
- Independence entre les comparaisons par paire

Propriétés

• La randomisation est partiellement maintenue

De la méta-analyse en comparaison directe à la comparaison indirecte à la

Evidence

Comparaison directe

Comparison indirecte

Essai 1: Drug A vs. placebo

Essai 2: Drug A vs. placebo

Essai 3: Drug B vs. placebo

Essai 4: Drug A vs. placebo

Essai 5: Drug B vs. placebo

Essai 6: Drub B vs. placebo

Essai 7: Drug C vs. placebo

Essai 8: Drug C vs. placebo

-

Analyse par paires

Drug A vs. placebo

Drug B vs. placebo

Drug C vs. placebo

Analyse par paire

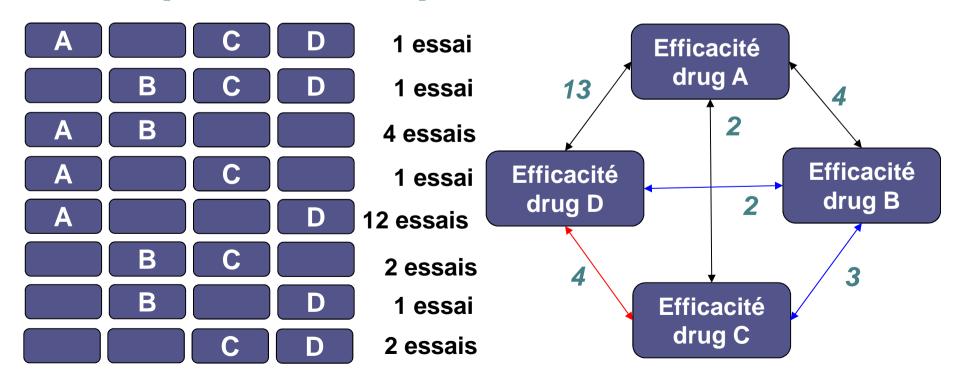
Drug A vs. Drug B

Drug A vs. Drug C

→ Drug B vs. Drug C

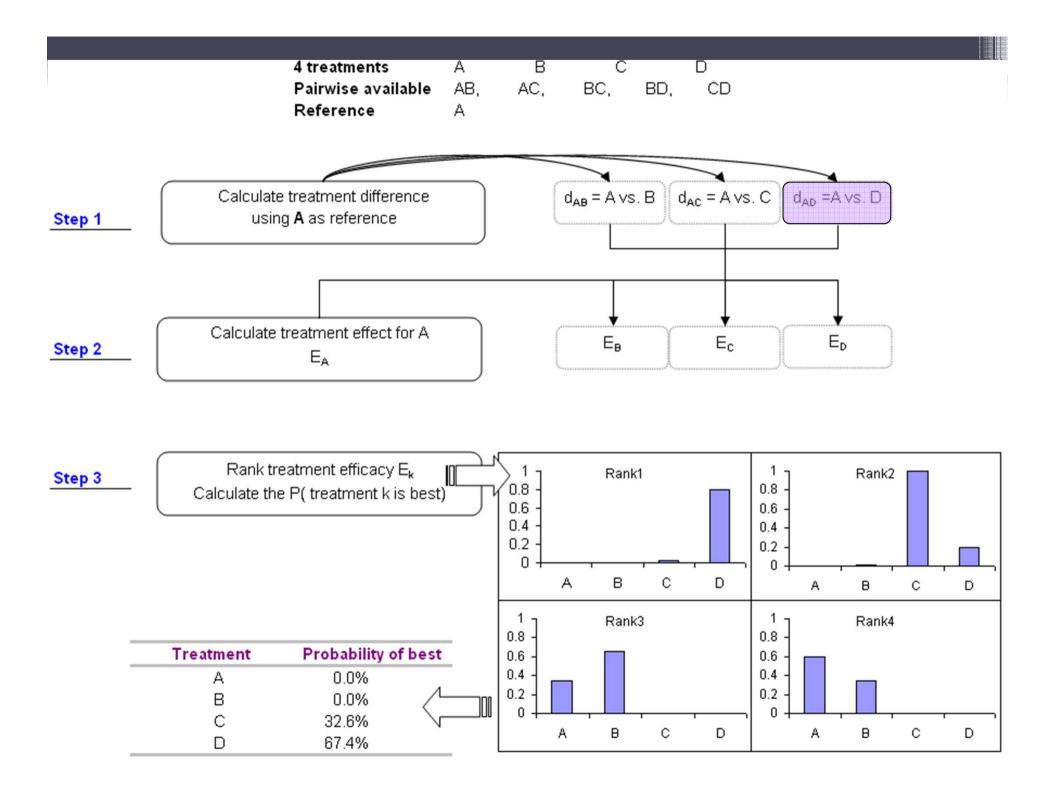
....comparaison multi-traitements

- La comparaison multi-traitments (mixed-treatment comparison) est une généralisation des méta-analyses par paires
 - Multiple traitements =>3 ou plus



Comparaison multi-traitements

- Quatre traitements A, B, C, D
- Paires disponible: AB, AC, BC, BD, CD
- => 6 log-odds ratio possibles :
 - Avs. B, Avs. C, Avs. D
 - B vs. C, B vs. D
 - Cvs. D
- Soit A le traitement de référence: les vrais effets traitement relatifs à A sont:
 - $^{\circ}$ d_{AB} , d_{AC} , d_{AD}
- Les 3 autres paires possibles sont:
 - $d_{BC} = d_{AB} d_{AC}$
 - $d_{BD} = d_{AB} d_{AD}$
 - $d_{CD} = d_{AC} d_{AD}$



Introduction (2) Définition des méta-analyses en réseau

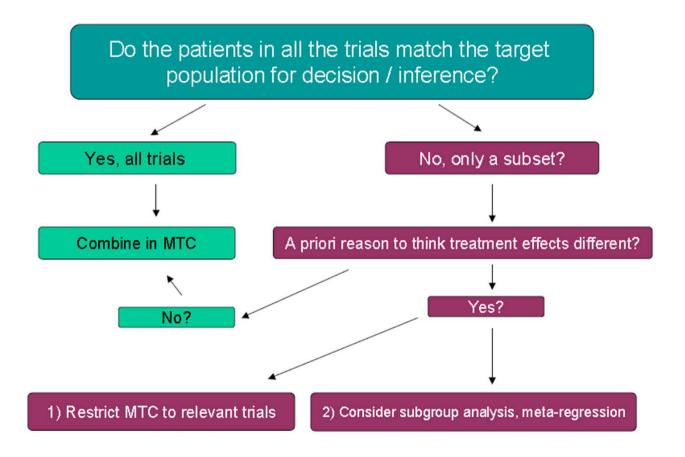
Comparaison multi-traitements

- Objectifs:
 - Comparer simultanément plusieurs options de traitements
 - Faire une seule analyse
 - Déterminer quel traitement a quelle probabilité d'être le meilleur
 - Maintenir la randomisation
- Permet des comparaisons indirectes en absence d'essais cliniques face-face
 - Eviter l'investissement financier dans des études randomisées
 - Gain de temps de l'analyse vs. essai clinique

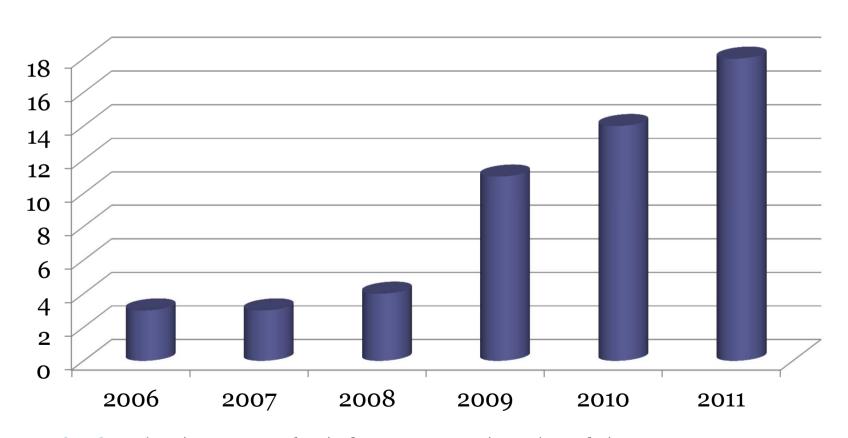
Questions à se poser avant de faire une MTC

- Est-ce que tous les traitements sont inclus?
- Est-ce que les traitements sont « discrets »?
- Est-ce que tous les essais pertinents sont inclus?
- Est-ce que le réseau est connecté?
- Est-il approprié de combiner toute l'information disponible en MTC?
- Est-ce que les preuves sont cohérentes?

Questions à valider



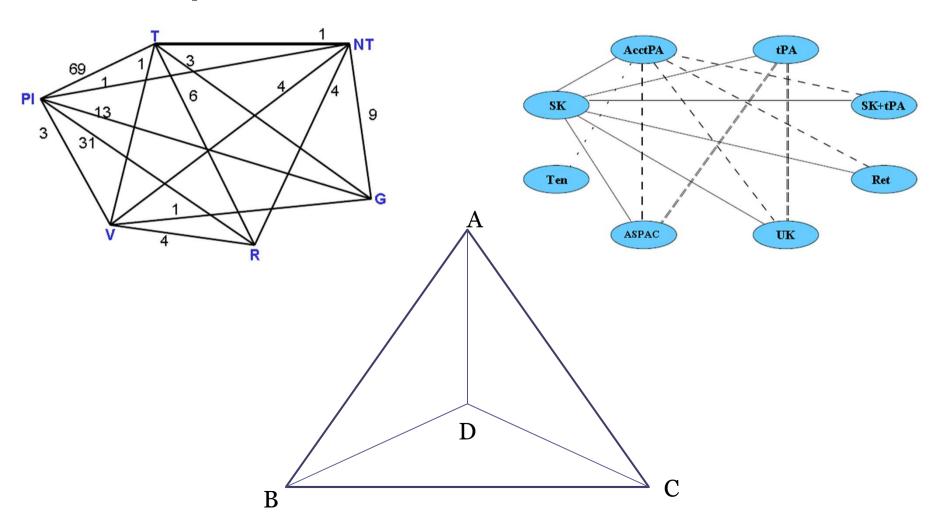
Méta-analyses multi-traitements, en réseau,, +30% sur les 2 dernières années



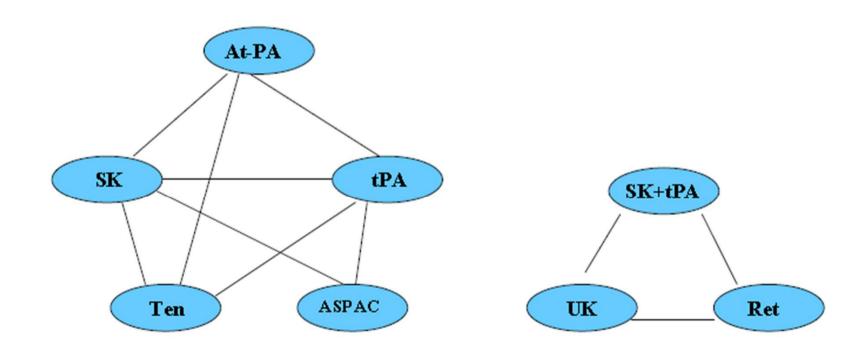
Source: www.pubmed.com (Janvier 2012 – search: mixed treatment comparison méta-analysis

Méta-analyses en réseaux Les principes

Exemples de réseaux connectés



Exemple hypothétique d'un réseau déconnecté

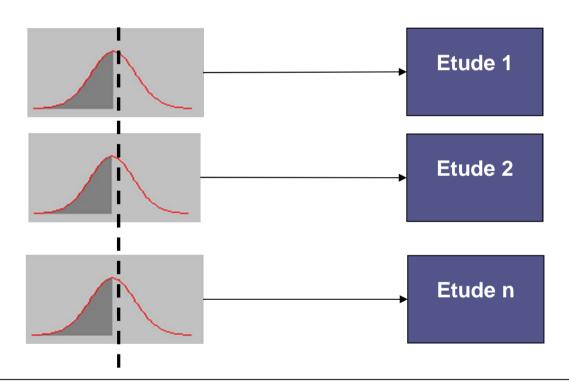


Méta-analyses en réseaux Hypothèses sous-jacentes

Hétérogénéité: modèle à effets fixes vs effets aléatoires

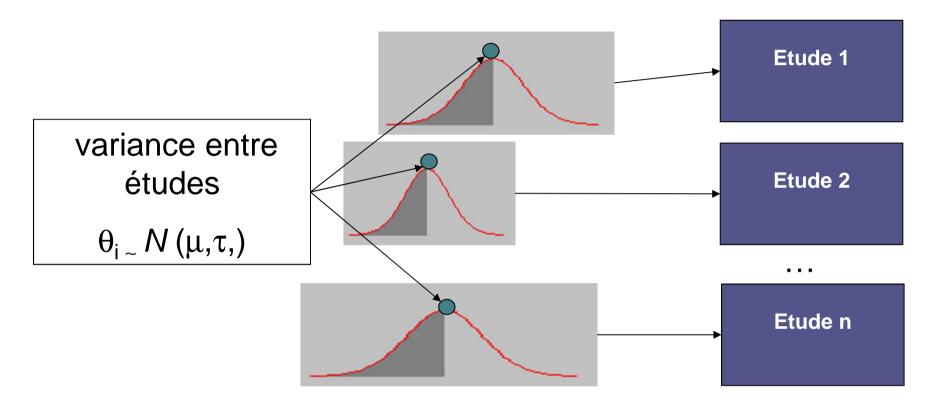
Evaluation de la **cohérence des preuves**

Modèle à effets fixes: Effet traitement supposé identique dans chaque étude



Hypothèse: Le vrai effet traitement est supposé le même pour toutes les études: $\hat{\theta}_i \sim N(\theta, \xi^2)$

Modèle à effets aléatoires



Hypothèse: Le vrai effet de chaque étude: θ_i est supposé échantillonné à partir d'une loi Normale

$$\hat{\theta}_i \sim N(\theta_i, \xi^2) = N(\theta_i, \xi^2 + \tau^2)$$

Validation de l'hypothèse de cohérence des preuves

• MTC = combinaison de preuve directes (A vs. B) et indirects: A vs. C, B vs. C => A vs. B

• Cohérence:
$$d_{BC} = d_{AB} - d_{AC} + \phi_{ABC}$$

 $\phi \sim N (o, \xi^2_{\phi})$

• Plusieurs méthodes « back-calculation », « node-splitting », ...

Modèle de régression

- Hypothèses:
 - Traitement: k
 - Etude: j
 - Résultats: Les effets doivent être additifs
 - Données binomiales:
 - Difference des occurrences des événements

 - Modèle transposable sur tous types de données (continues, binaires, de survie, etc....)

Modèle à effets-fixes vs. Effets aléatoires

• Effet traitement = variable continue

$$\theta_{jk} = \begin{cases} \mu_{jb} & k = b; \quad b = A, B, C, \dots \\ \mu_{jb} + \delta_{jbk} & k > b; \quad b = A, B, C, \dots \end{cases}$$

• Effet traitement = variable discrète

$$|r_{jk} \sim \text{Bin}(p_{jk}, n_{jk})$$

$$\theta_{jk} = \text{logit}(p_{jk})$$

 Soit A le traitement de référence pour la MTC

$$\begin{cases} d_{BC} = d_{AC} - d_{AB} \\ d_{BD} = d_{AD} - d_{AB} \\ d_{CD} = d_{AD} - d_{AC} \\ & \dots \end{cases}$$

• Modèle à effets fixes: $\sigma_{bk}^2 = 0$

$$\delta_{jbk} \sim N(d_{bk}, \sigma_{bk}^2)$$

• Modèle a effets aléatoires: $\sigma_{bk}^2 = \sigma^2$

Variantes des modèles

- Modèles à effets fixes
 - Variance intra-étude
- Modèles à effets aléatoire
 - Variance intra & inter-étude
- Méta-regression
 - Intégration de co-variables

Méta-analyses en réseaux Approche Bayesienne

Approche Fréquentiste vs. Bayésienne

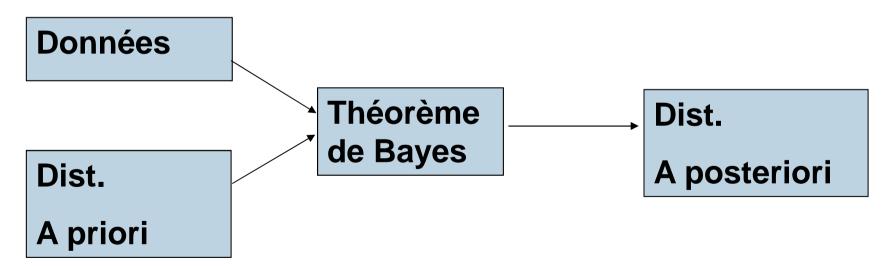
- La notion de "fréquentiste" fait référence aux méthodes statistiques traditionnelles.
 - Comparaisons directes et indirectes
 - Dans les modèles MTC et méta-régression, les estimations et l'inférence statistique sont établit à partir du maximum de vraisemblance
- La méthode bayésienne combine
 - la vraisemblance : probabilité que les données sont une fonction des paramètres
 - la distribution de probabilité a priori: opinion a priori des valeurs possibles de ces paramètres

Pour obtenir une distribution de probabilité des paramètres à posteriori

=> permet de faire des prédictions

Analyse bayésienne - concept général

- Theorème de Bayes
- $P(A|B) = P(A \cap B)/P(B)$ = P(B|A)(P(A)/P(B))



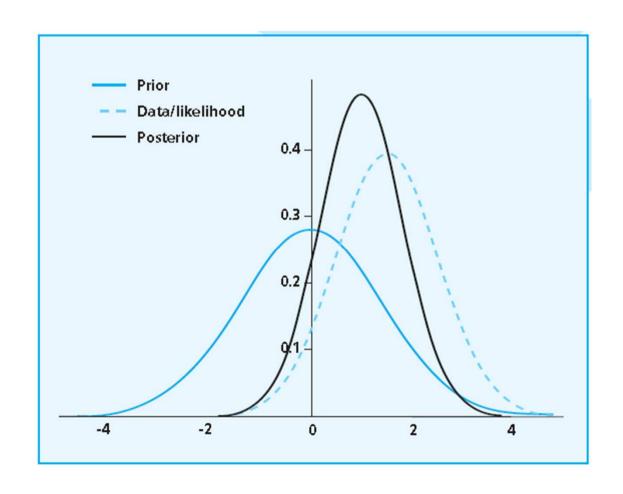
$$P(\theta | Data) \propto P(\theta) P(Data | \theta)$$

Analyse bayésienne - concept général

$$P(\theta \mid Data) \propto P(\theta) P(Data \mid \theta)$$
Fonction de densité a priori
Fonction de Vraisemblance

- Environnement bayésien
 - Nécessité de spécifier les distributions à priori
 - Modèle à effets aléatoires => distribution a priori pour la variance entre études
 - Tous les paramètres inconnus sont considérés comme aléatoires

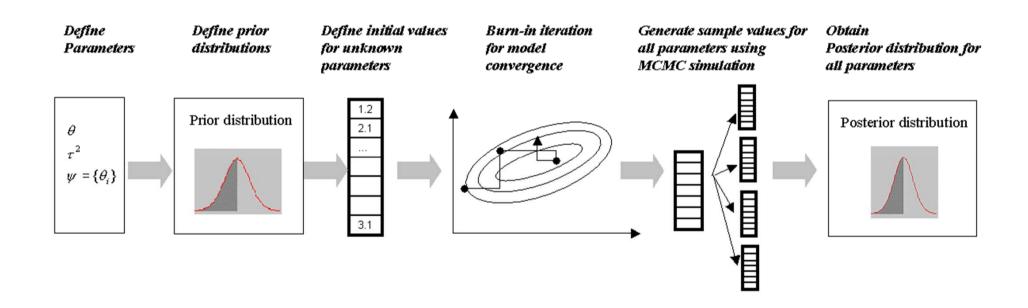
Analyse bayésienne - concept général



Les probabilités a priori permettent d'incorporer différentes sources d'incertitudes

- Dépend de la connaissance des données que l'analyste / l'expert a
- Distribution non-informative ou vague: $\beta \sim N(0, 10^6)$.
 - Aucune croyance à priori quant à l'efficacité des traitements comparés
 - Approche similaire à l'approche classique fréquentiste
 - Similitude entre distribution a posteriori et les données
 - Impact négligeable sur les résultats
- Distribution a priori Sceptique: $\beta \sim N(o, \sigma_{scep}^2)$
 - Croyance a priori que les traitements comparés ont peu de chance d'être différents
 - $\beta \sim N(0, 0,005)$
- Distribution Informative: $\beta \sim N(2.09, 0.30)$.
 - Croyance a priori que le traitement comparé est hautement effectif
 - Utilise des informations extérieures aux données
 - Le choix de la distribution a priori impacte les résultats

Obtention des distributions a posteriori: Simulations MCMC



MCMC: Markov chain Monte Carlo

Utilisation de l'approche bayesienne

- Les méthodes bayésiennes sont utilisées de plus en plus souvent dans le cadre de la santé
- Conséquence de:
 - L'avancée technologique des programmations des méthodes de calculs et de l'informatique
 - Facilement interprétable
- Avantage
 - Evite les difficultés rencontrées avec les méthodes fréquentistes
 - Permet d'ordonner les traitements sur la base du niveau comparatif d'efficacité
- Logiciel:
 - WinBUGS Gratuit
 - http://www.mrc-bsu.cam.ac.uk/bugs

Validation du modèle

Fréquentiste: Critère AIC

- Akaike Information Criterion
- Evalue la bonne adéquation du modèle
- Permet de comparer les modèles
- AIC = $-2 L(\theta) + 2k$
 - Plus petit AIC => meilleur est le modèle

Bayesien: Critère DIC

- Deviance Information Criteria
- **Deviance résiduelle (Dres):** Evalue la bonne adéquation du modèle
- **DIC**: permet de comparer les modèles
- $DIC = \overline{D}_{res} + k$
 - $\mathbf{D_{res}} = -2\mathbf{L}(\boldsymbol{\theta}) => \text{Plus petit}$

Validité du modèle

- Adéquation du modèle / cohérence
 - Deviance résiduelle (= nombre de données)
 - DIC (Deviance Information Criterion) => Plus petit DIC
 - Contribution des données à la Déviance
 - Cohérence entre données observées / données prédites
- Sensibilité des distributions a priori
 - Modèles à effet aléatoire : variance inter-étude/sd/precision est faiblement estimée si peu d'observations
 - => importance des distribution a priori pour la variance inter-étude
 - Pas aussi important en MTC que pour les comparaisons par paires
 - Au niveau de l'écart type:
 - Distribution uniforme
 - · Distribution semi-normal

Codes WinBUGS: Modèle à effets fixes

```
Model{
```

```
# treatment arm N
  # trial M
  # treatment k (4 treatments)
  # study S[i]
  # treatment t[i]
  # baseline treatment b[i]
#Model
  for (i in 1: N) {
       r[i] ~ dbin(p[i], n[i])
       logit(p[i]) <- mu[s[i]] + d[t[i]] - d[b[i]]
   eviance residuals for data i
    rhat[i] <- p[i] * n[i]
    dev[i] <- 2 * (r[i] * (log(r[i])-log(rhat[i]))
             + (n[i]-r[i]) * (log(n[i]-r[i]) - log(n[i]-rhat[i])))
    sumdev <- sum(dev[])
#Priors for M trial baselines
  for (i in 1: M) { mu[i] ~ dnorm(0,0.00001)}
#Priors for basic parameters (d[1] = dAA = 0)
  d[1] < 0
  for (k \text{ in } 2:4) \{d[k] \sim dnorm(0,0.00001)\}
```

```
# Absolute treatment effects
#(log odds on treatment reference)
# n trials based on treatment reference
  for (i in 1: N) { mu1[i] <- mu[s[i]]*equals(t[i],1) }
  Mean <- sum(mu1∏)/n
# Calculate treatment effects, T[k], on natural scale
    for (k in 1: 4){ logit(T[k]] <- mean + d[k] }
# Ranking and probability treatment k is best
    for (k in 1:4) {
       rk[k] < 5 - rank(T[l,k)
       best[k] <-equals(rk[k],1)
# All pairwise LOR and OR
    for (c in 1:3){
         for (k in (c+1):k){
              lor[c,k] \leftarrow d[k] - d[c]
              log(OR[c,k]) \leftarrow lor[c,k]
```

Codes WinBUGS : Modèle à effets aléatoires

```
Model{
  tor (i in 1: N) {
        r[i] \sim dbin(p[i], n[i])
        logit(p[i]) \leftarrow mu[s[i]] + delta[i]*[1-equals(t[i],b[i])]
        delta[i] ~ dnorm(md[i], prec)
        md[i] < -d[t[i]] - d[b[i]]
#Priors for M trial baselines
  for (j in 1: M) {
        mu[i] \sim N(0.0.00001)
#Priors for basic parameters (d[1] = dAA = 0)
   d[1]<-0
  for (k in 2:4) {
        d[k] \sim N(0,0.00001)
#Vague priors for between-study sd
   sd \sim dunif(0,2)
   prec <- 1/(sd*sd)
```

```
#Model
for (i in 1: N) {
    r[i] ~ dbin(p[i], n[i])
    logit(p[i]) <- mu[s[i]] + d[t[i]] - d[b[i]]
    }
```

Méta-analyses en réseaux Applications

Utilisation WinBugs Lecture Programme et Résultats

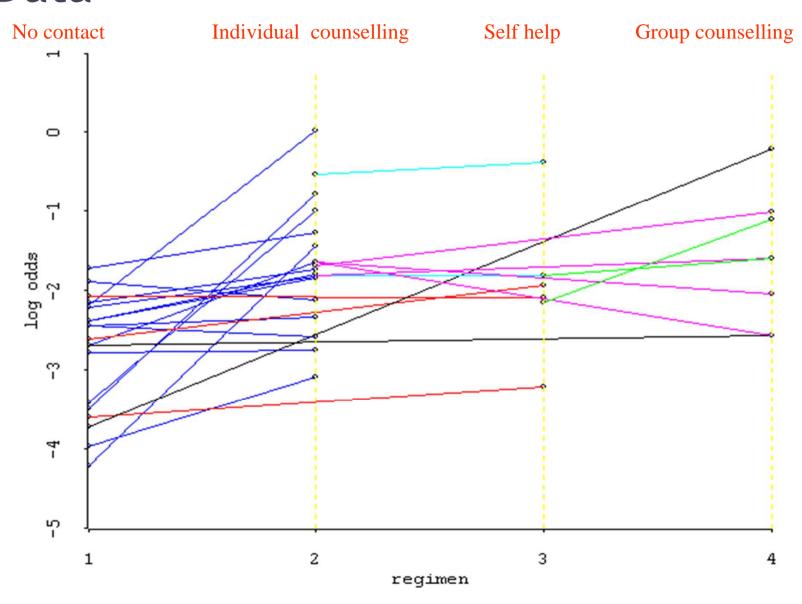
Example: Smoking Cessation (Hasselblad, 1998)

- 24 essais, 4 traitements, and 50 points de données (2 essais 3-bras, les autres 2-bras)
- Traitement:
 - A: No Contact
 - B: Self-Help
 - C: Individual Counselling
 - D: Group Counselling

Smoking Cessation Structure Données

A		C	D	1 essai
	В	C	D	1 essai
A	В			2 essai
A		C		15 essai
A			D	1 essai
	В	С		1 essai
	В		D	1 essai
		C	D	2 essai

Mixed Comparisons: Smoking-cessation Data



Les données

s[]	t[]	r[]	n[]	b[]
1	1	79	702	1
1	2	77	694	1
2	1	18	671	1
2 2 3	2	21	535	1
3	1	8	116	1
3	2	19	149	1
	•	•	•	•
	•	•	•	•
20	2	20	49	2
20	3	16	43	2
	•	•	•	•
24	4	3	26	3
END				

s[] study number

t[] treatment

r[] numerator

n[] denominator

b[] trial 'baseline' treatment

NB: $b[] \le t[]$.

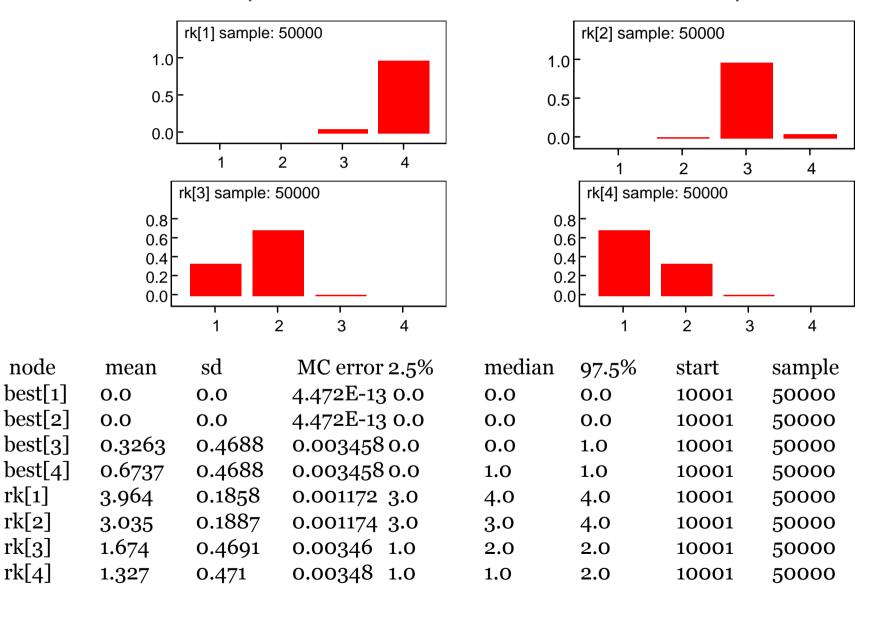
Résultats, modèle à effets fixes

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
T[1]	0.07482	0.004164	3.717E-5	0.06689	0.07476	0.08317	10001	50000
T[2]	0.0926	0.01049	8.775E-5	0.07357	0.0921	0.1145	10001	50000
T[3]	0.1481	0.006912	3.667E-5	0.1349	0.148	0.1619	10001	50000
T[4]	0.1593	0.02254	1.811E-4	0.1189	0.1581	0.2065	10001	50000
d[2]	0.2279	0.1262	0.001155	-0.01972	0.2281	0.4756	10001	50000
d[3]	0.766	0.05778	6.511E-4	0.6529	0.7656	0.8792	10001	50000
d[4]	0.8436	0.1767	0.001594	0.4999	0.8445	1.189	10001	50000

Résultats, modèle à effets aléatoires

	node	mean	sd	MC error 2.5%	median	97.5%	start	sample
Pairwise 2	Log Odds	Ratios						
	lor[1,2]	0.2279	0.1262	0.001155 -0.01972	0.2281	0.4756	10001	50000
	lor[1,3]	0.766	0.05778	6.511E-4 0.6529	0.7656	0.8792	10001	50000
	lor[1,4]	0.8436	0.1767	0.001594 0.4999	0.8445	1.189	10001	50000
	lor[2,3]	0.5381	0.1341	0.00119 0.2775	0.5377	0.8001	10001	50000
	lor[2,4]	0.6157	0.1944	0.001691 0.2353	0.6147	1.0	10001	50000
	lor[3,4]	0.07755	0.1735	0.001427 -0.2625	0.07856	0.4157	10001	50000
Pairwise (Odds Rati	os						
	or[1,2]	1.266	0.1604	0.001478 0.9805	1.256	1.609	10001	50000
	or[1,3]	2.155	0.1246	0.001404 1.921	2.15	2.409	10001	50000
	or[1,4]	2.361	0.421	0.003758 1.649	2.327	3.284	10001	50000
	or[2,3]	1.728	0.2327	0.0020391.32	1.712	2.226	10001	50000
	or[2,4]	1.886	0.3712	0.003166 1.265	1.849	2.719	10001	50000
	or[3,4]	1.097	0.1918	0.001561 0.7691	1.082	1.516	10001	5000

Résultats, modèle à effets fixes, Ranks

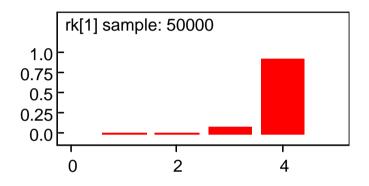


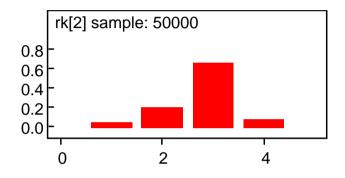
Résultats, modèle à effets aléatoires, Ranks

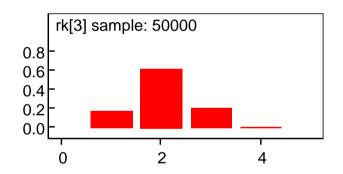
node T[1] T[2] T[3] T[4]	mean 0.06732 0.1139 0.1413 0.1977	, ,	MC error 9 9.657E-5 2.649E-4 1.387E-4 5.762E-4	0.09592	0.1085	97.5% 8 0.07957 0.2057 0.1975 0.3606	10001 10001	sample 50000 50000 50000
d[2] d[3] d[4]	0.5268 0.8122 1.177	0.3862 0.2318 0.4525	0.00305 0.002203 0.004388	0.372	0.8054	1.315 1.294 2.11	10001 10001 10001	50000 50000 50000
sd	0.82		0.002468	0.5352		-10	10001	50000

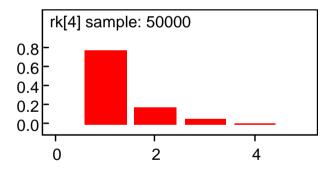
Between-trials variation >>>0

Résultats, modèle à effets aléatoires, Ranks









node	mean sd	MC er	ror 2.5%	medi	an	97.5%	start	sample
best[1] 2	2.0E-5	0.004472	2.001E-5	0.0	0.0	0.0	10001	50000
best[2] c	0.04668	0.211	0.001059	0.0	0.0	1.0	10001	50000
best[3] c	0.1805	0.3846	0.002286	0.0	0.0	1.0	10001	50000
best[4] c	0.7728	0.419	0.002687	0.0	1.0	1.0	10001	50000

Adéquation du modèle

Effets Fixes

```
node mean sd MC error 2.5% median 97.5% start sample resdev 267.1 7.45 0.03323 254.7 266.4 283.5 10001 50000
```

Dbar = post.mean of -2logL;Dhat = -2LogLat post.mean of stochasticnodes Dbar Dhat pD DIC

```
r 494.704 467.705 26.999 521.702 total 494.704 467.705 26.999 521.702
```

Effets Aléatoire

```
        node
        mean
        sd
        MC error 2.5%
        median
        97.5%
        start
        sample

        resdev
        54.13
        10.11
        0.08202
        36.04
        53.53
        75.63
        10001
        50000
```

Dbar = post.mean of -2logL; Dhat = -2LogL at post.mean of stochastic nodes Dbar Dhat pD DIC

```
r 281.729 236.900 44.830 326.559 total 281.729 236.900 44.830 326.559
```

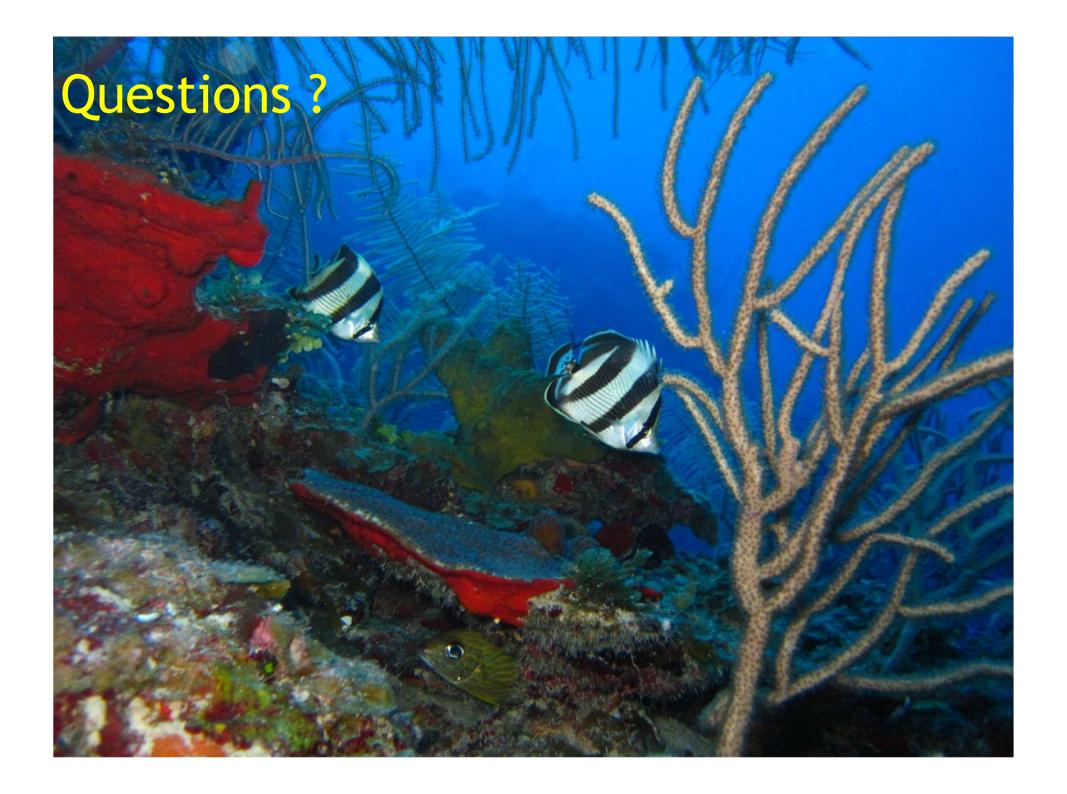
Méta-analyses en réseaux Discussion

Points d'attention pour des travaux futurs

- Comparabilité des essais
- Structure et propriétés des réseaux
- Méthodes pour vérifier les hypothèses de cohérence
- Multiple effets relatifs
- Gestion de l'incertitude (notamment pour les études de petites tailles)
- Taille du réseau
- Données patients
- Complexité et accessibilité des méthodes dans des domaines de décisions

Intérêt des méta-analyses multi-traitements

- Déterminer des efficacités relatives grâce à l'ensemble des preuves disponibles
- Gagner de la puissance grâce aux comparaisons indirectes
- Permettre l'estimation de comparaisons peu ou pas réalisées en pratique
- Classer les traitements
- Réutilisation des résultats à des fins de modélisation économique
- Outils d'aide à la décision



Back-up

Références

- Song et al. What is indirect comparison?
- Bucher HC, Guyatt GH, Griffith LE, et al. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 1997; 50(6):683-691.
- Lu G, Ades AE. Journal Of The American Statistical Association, 2006
- Dias S, Welton NJ, Caldwell DM, et al. Checking consistency in mixed treatment comparison meta-analysis. Stat Med 2010; 29:932–44.
- Caldwell D. Introduction to indirect and mixed treatment comparisons (MTC). NICE workshop 2006
- Technology Assessment Program (US). Use of Bayesian techniques in RCT: a CMS case study. 2009
- CADTH. Indirect Evidence: Indirect Treatment Comparisons in Meta-Analysis. 2009
- Interpreting Indirect Treatment Comparisons and Network Meta-Analysis for Health-Care Decision Making: Report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: Part 1
- Conducting Indirect Treatment Comparison and network Meta-analysis Studies: Report of the ISPOR Task Force on Indirect Treatment Comparisons—Part 2

Inconsistency measure

- Back calculation
 - Let have 3 treatments A,B,C
 - $^{\circ}$ 3 direct estimated treatment effects \hat{d}_{AB}^{Dir} , \hat{d}_{AC}^{Dir} , \hat{d}_{BC}^{Dir}
 - The indirect effect d_{bc} : $\hat{d}_{BC}^{Ind} = \hat{d}_{AC}^{Dir} \hat{d}_{AB}^{Dir}$
 - Measure of discrepency: $\hat{\omega}_{BC} = \hat{d}_{BC}^{Dir} \hat{d}_{BC}^{Ind}$ $Var(\hat{\omega}_{RC}) = V_{RC}^{Dir} + V_{RC}^{Ind}$.
 - Test: $\hat{\omega}_{xy} = 0$ with $z_{XY} = \hat{\omega}_{XY} / \sqrt{Var(\hat{\omega}_{XY})}$ Normal