Séminaire Formation JGEM SFES MAS : Modélisation Médico-économique Nouveaux modèles-Nouveaux instruments- Cas pratiques Paris, 29 et 30 Novembre 2016

Apports de la Typologie des Modèles

Pr Robert Launois

28, rue d'Assas 75006 Paris – France

Tel . 01 44 39 16 90 - Fax 01 44 39 16 92

E-mail: reesfrance@wanadoo.fr - Web: www.rees-france.com

Construire un modèle pour disposer d'une paillasse virtuelle

S'IL VOUS PLAIT, DESSINE MOI ...UN MODÈLE

• Un objet modélisé, ou un objet modélisant ?

Une représentation stylisée ou un instrument d'expérimentation ?
 → adopter la 2éme définition

« Pour un observateur B, un objet A* est un modèle d'un objet A, dans la mesure où B peut utiliser A* pour répondre à des questions qui l'intéressent au « sujet de A ».

(Legay 1963)

«MODÈLE = DÉCISION + HASARDS + ENJEUX»

E. Parent 2006

Tout modèle comporte :

- Une structure : un arbre logique de survenue des événements, suite à une prise de décision,
- Un ensemble de lois : des relations déterministes ou probabilistes qui lient les entrées du système et ses sorties en termes de conséquences
- Des paramètres c.a.d. des constantes ou des variables pouvant prendre des valeurs numériques, qui permettent de spécifier ces relations,
- Des enjeux de fin de Partie

Pas une « boite noire », mais un « outil de facilitation » qui décrit une situation complexe dans des termes compréhensibles et mesurables (Varennes 2009)

UTILITÉ DES MODÈLES

- Simuler des situations que l'on ne peut pas tester expérimentalement (coût, éthique...)
- Extrapoler le devenir du patient dans le temps
 - Mortalité à 30 jours → espérance de vie
- Estimer des résultats non mesurés directement
 - Critères de substitution dans un essai clinique : pression artérielle → mortalité
 - Coûts pertinents dans l'évaluation : coûts de l'intervention dans l'ostéoporose → coûts des fractures à venir
- Synthétiser des sources de données multiples
 - Coûts et efficacité proviennent de sources différentes
 - Comparaisons indirectes entre les interventions à évaluer
 - Plusieurs essais disponibles pour un même critère

A QUOI LE MODÈLE PEUT IL SERVIR?

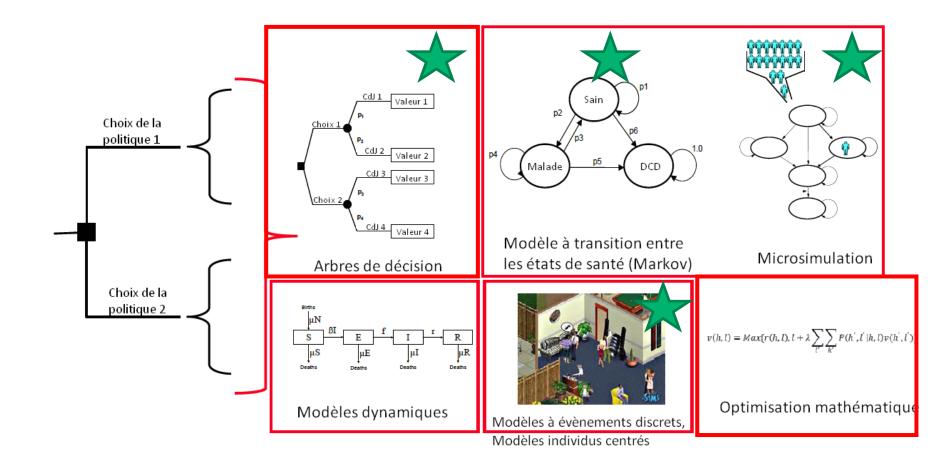
- Outil prédictif +++ : Élaborer des variantes prévisionnelles. Objectif : « passer d'une médecine de la réactivité à une médecine d'anticipation ».
- Outil normatif ++: Contribuer à la fixation de règles de gestion (Seuils pour fixer l'effort financier socialement acceptable).

Attention la beauté de la carrosserie peut cacher la faiblesse du moteur !!!

- Outil descriptif +/- : « mimer » le génie évolutif de la maladie en formalisant les connaissances et les hypothèses dans un cadre cohérant.
 - Construire le modèle en fonction des besoins de ceux dont il doit éclairer la prise de décision

QUE MESURE UN PARAMÈTRE ?

Modèles « individus centrés » :


- C'est la distribution du paramètre T(la taille par ex) dans l'échantillon qui nous intéresse pour pouvoir les utiliser comme estimateurs des paramètres liés à la population.
- Loi Normale : T ~ Norm (X,s²), avec :
 - X = moyenne de l'échantillon
 - s² = variance estimée à partir de l'échantillon

Majorité des modèles en évaluation économique. Modèles à l'échelle d'une population

- C'est la distribution de l'espérance du paramètre qui nous intéresse. [E[T] est la valeur centrale d'une distribution de probabilité qui est une représentation de l'incertitude de la moyenne dans la population, alors que la moyenne X caractérise un échantillon]
- Loi normale : $E[T] \sim Norm(\mu, \sigma^2)$,
 - $\sigma^2 = s^2/n$ est une représentation de l'incertitude sur la variabilité de la moyenne dans la population

LA MULTITUDE DES MODÈLES POSSIBLES

TYPES DE MODÈLES

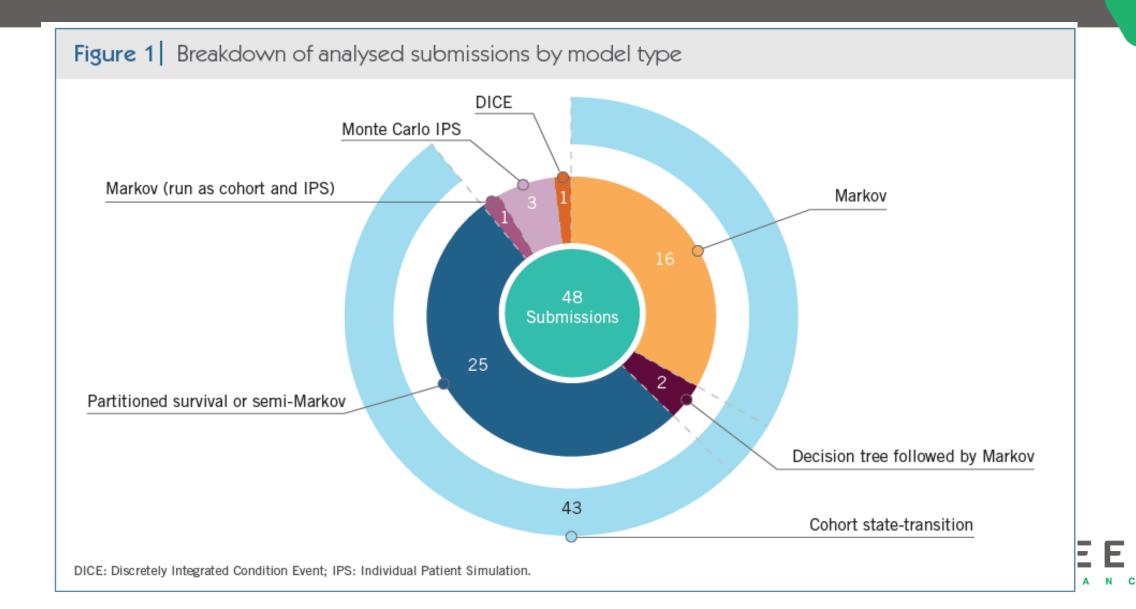
				Α	В	С	D	
				Modèle de c	ohorte agrégée	Modèle individus-centrés		
				Déterministe	Probabiliste	Markovien (Sans mémoire)	Non Markovien	
1	actions actions		ractions	Arbre de décision avec chainage arrière	Arbre de décision Monte-Carlo d'ordre 2 (rare)	Arbre de Monte-Carlo d		
2	lu temps	Explicite	Sans inter	Modèle de Markov déterministe	Macrosimulation de Markov; Monte-Carlo d'ordre 2	Microsimulation de Markov; simulation par échantillonnage individuel. ISM, M Analyse stochastique discrète ou continue; (cf ci-des		
3	Prise en compte d nuituractions	Madèla égidégialagiana è	Chaîne de Markov en temps; discret		Simulation en temps discret orientée agents Modèle Multi-Agents			
4		Continu	Avecinterac	Modèle épidémiologique à compartiments, systèmes d'équations différentielles	Chaîne de Markov en temps; continu	Microsimulation à temps continu exponentiel† Monte-Carlo d'ordre 1	Simulation en temps continu Fonctions paramétriques non exponentielles, survie partitionnée Evénements discrets	

MNM : modèle Non Markovien; MC : Monte-Carlo ; ISM : individual sampling model ; DES : Discrete event simulation . †Inverse Cumulative distribution function : Fréquence des contacts , probabilité d'être infecté et fonction inverse

REES

TYPES DE MODÈLES COURAMMENT UTILISÉS

Arbre de décision


Modèle de cohorte multi- états

Modèle de microsimulation multi- états

Simulation à événements discrets (SED)

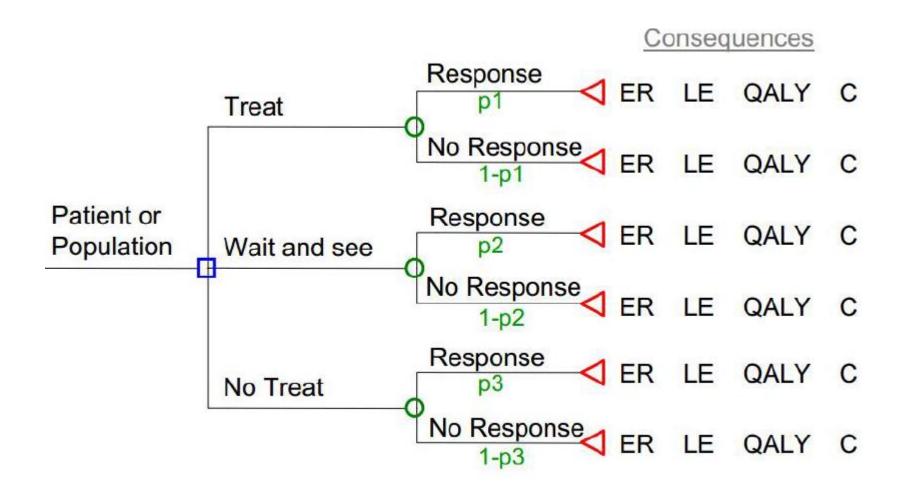
FREQUENCE DE LEUR MISE EN ŒUVRE EN GB

12

Marque	Indication	Laboratoire	Type de modèle	CRO E/FR	Réserves	Date Avis
Entresto	Insuffisance cardiaque chronique	NOVARTIS PHARMA	Modèle de Markov agrégé	F	Importante	2016 04
Lemtrada	Sclérose en plaques	GENZYME	Modèle de Markov agrégé	Е	Importante	2015 09
Praluent	Hypercholestérolémie primaire ou dyslipidémie mixte	SANOFI	Modèle de Markov agrégé	F	Majeure	2016 04
Repatha	Hypercholestérolémie	AMGEN	Modèle de Markov agrégé	E	Majeure	2015 12
Strensiq	Hypophosphatasie	ALEXION PHARMA	Modèle de Markov agrégé	Е	Majeure	2016 05
Vectibix	Cancer colorectal métastatique	AMGEN	Modèle de Markov agrégé	E	Majeure	2014 05
OctaplasLG	Déficits en facteurs de coagulation	OCTAPHARMA	Modèle de Markov agrégé ?	?	Majeure	2016 10
Genvoya	VIH de type 1	GILEAD SCIENCES	Microsimulation à temps discret	?	Majeure	2016 04
Orkambi	Mucoviscidose	VERTEX	Microsimulation à temps discret	Е	Importante	2016 05
Venclyxto	Leucémie lymphoïde chronique	ABBVIE	Microsimulation à temps continu ?	?	Majeure	2017 06
Gardasil 9	Cancer du col de l'utérus	MSD Vaccins	Modèle à compartiments SIRS	E	Importante	2017 09

EN FRANCE CLASSEMENT DES AVIS SELON LE TYPE DE

MODÈLE[1]


EN FRANCE CLASSEMENT DES AVIS SELON LE TYPE DE MODÈLE[2]

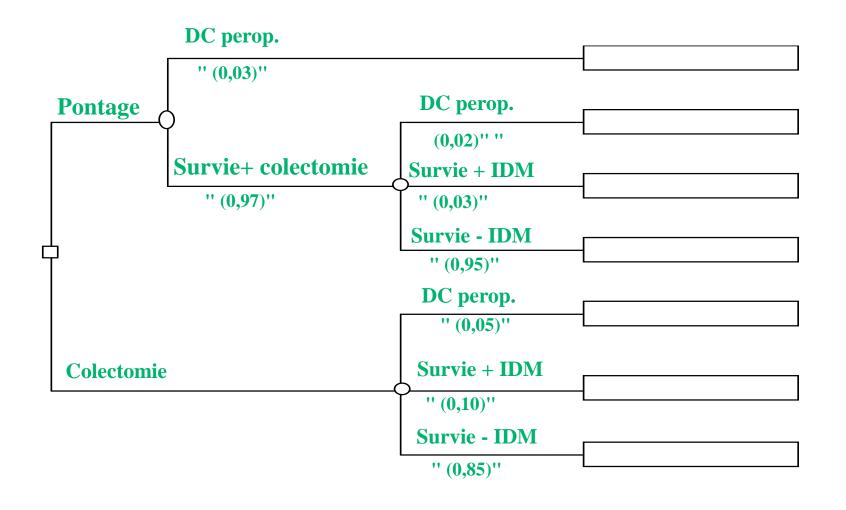
Marque	Indication	Laboratoire	Type de modèle	CRO E/FR	Réserves	Date Avis
Cotellic + Zelboraf	Mélanome	ROCHE	Modèle de survie partitionnée	E	Importante	2016 06
Halaven	Cancer du sein méta	EISAI	Modèle de survie partitionnée	E	Importante	2015 07
Halaven	Liposarcome	EISAI	Modèle de survie partitionnée	E	Majeure	2017 03
Imbruvica	Leucémie lymphoïde chronique	JANSSEN-CILAG	Modèle de survie partitionnée	E	Majeure	2015 04
Imbruvica	Lymphome à cellules du manteau	JANSSEN-CILAG	Modèle de survie partitionnée	E	Majeure	2015 04
Imbruvica	Leucémie lymphoïde chronique	JANSSEN-CILAG	Modèle de survie partitionnée	E	Importante	2016 06
Kyprolis	Myélome multiple	AMGEN	Modèle de survie partitionnée	E	Importante	2016 05
Opdivo	Cancer bronchique non à petites cellules epidermoïde	BMS	Modèle de survie partitionnée	E	Mineure	2015 12
Zydelig	Leucémie lymphoïde chronique / Lymphome folliculaire	GILEAD SCIENCES	Modèle de survie partitionnée	?	Majeure	2015 04
Zydelig	Leucémie lymphoïde chronique	GILEAD SCIENCES	Modèle de survie partitionnée	E	Majeure	2017 05

Arbres de décision

ARBRE DE DÉCISION

LES ÉTAPES DE LA MODÉLISATION

- Définition de la structure du modèle (identification des paramètres d'intérêt)
- Affectation des valeurs aux paramètres (choix des sources de données)
- Valorisation des résultats (critères de jugement)
- Calcul des espérances d'efficacité et de coût
- Analyse de sensibilité


CAS CLINIQUE : PONTAGE AORTO-CORONARIEN ET/OU COLECTOMIE

- ☐ t-3 ans : Homme de 67 ans avec antécédent d' infarctus du myocarde ☐ t -2 mois :
 - Dépression significative du segment S-T, lumière de l'aorte droite et l'artère circonflexe gauche réduite, Ejection systolique de 60%
 - Cellules sanguines dans les selles, lésion du colon, bilan hépatique normal

Doit on réduire le risque opératoire de la Colectomie par un Pontage Aorto-Coronarien préalable ou faut il pratiquer une colectomie d'emblé ?

ARBRE DE DÉCISION

ESTIMATION DE L'ESPÉRANCE DE VIE : LA MÉTHODE DEALE

I Calcul de la mortalité naturelle

- Espérance de vie normale d'un individu sain en population générale ayant le même âge et le même sexe que le malade traité
- L'inverse de cette espérance de vie égale le taux de mortalité normal du sujet traité

II Calcul de la surmortalité due a la maladie

- (1)Taux de la mortalité <u>brute observé</u> dans l'essai
- (2)Taux de mortalité annuel d'une population saine ayant les mêmes caractéristiques d'âge et de sexe que la population de l'essai
- (1)-(2) Surmortalité "<u>pure"</u> imputable à la pathologie invariante dans le temps)

III Calcul de l'espérance de vie spécifique-

L'espérance de vie spécifique est égale à l'inverse du taux de mortalité normale et du taux de surmortalité lié à la pathologie dont il est porteur.

EVS = 1/Taux mortalité naturelle + taux de surmortalité lié(s) aux différente(s) pathologie(s)

CALCUL DES TAUX DE MORTALITÉ

• Mortalité générale :

Espérance de vie EV_{ASR}d 'un homme blanc de 67 ans : 12,6 ans

$$\mu_{ASR} = 1/EV_{ASR} = 1/12,6 = 0,079$$
 année

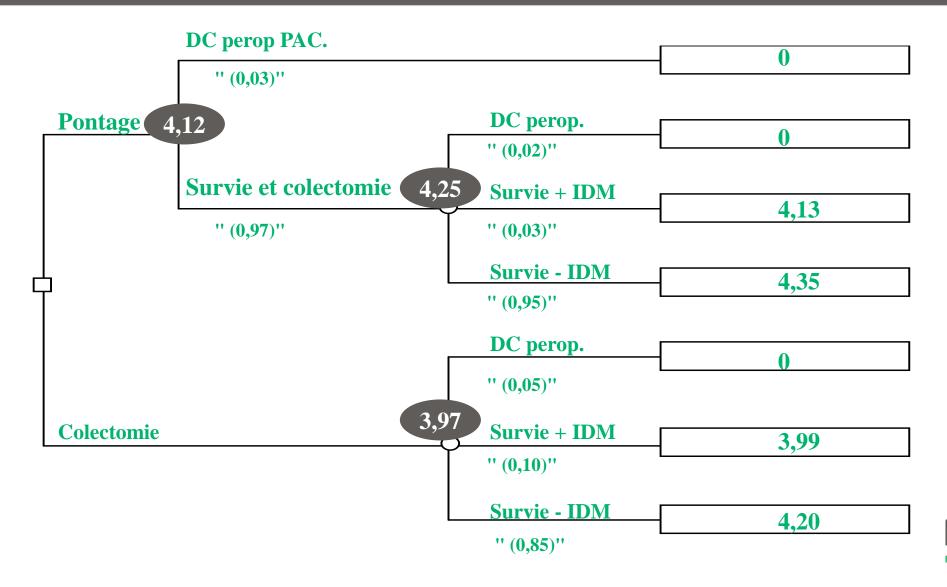
• Mortalité spécifique du cancer du colon : Taux de survie, tout stade confondu, à 5 ans : 0,51

$$\mu_{CC} = -1/t \ln(S) = -1/5 \ln(0.51) = 0.135$$
année

HYPOTHÈSES SUR LES DONNÉES DE MORBI-MORTALITÉ

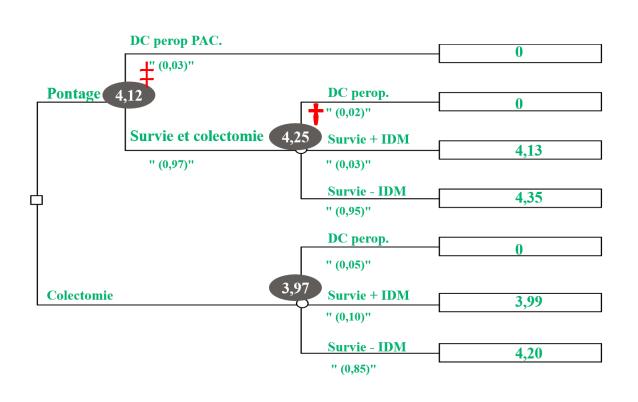
	Symbole	Proba
Taux de mortalité		
Taux de mortalité générale (INSEE)	μ_{ASR}	0,079 / an
Taux de mortalité spécifique Cancer colorectal (CCR) [Essais] Atteintes coronariennes bitronculaires:	μ_{CCR}	0,135 / an
Pontage aorto-coro (PAC) [Essais]Traitement médical [Essais]	$\mu_{PAC} \ \mu_{MED}$	0,016 / an 0,024 / an
Ajustement de qualité de vie		
QdV post-infarctus [Enquête]	Q_{IM}	0,95

APPLICATION DE LA FORMULE DEALE : CALCUL DE L'ESPÉRANCE DE VIE


Pontage coronarien →Colectomie → Infarctus (+IDM)	$\frac{Q_{IM}}{\mu_{ASR} + \mu_{CCR} + \mu_{PAC}}$	= 4,13#
Pontage coronarien → Colectomie → Pas d'infarctus (-IDM)	$\frac{1}{\mu_{ASR} + \mu_{CCR} + \mu_{PAC}}$	= 4,35†
Colectomie → Infarctus (+IDM)	$\frac{Q_{IM}}{\mu_{ASR} + \mu_{CCR} + \mu_{MED}}$	= 3,99
Colectomie →Pas d'infarctus (-IDM)	$\frac{1}{\mu_{ASR} + \mu_{CCR} + \mu_{MED}}$	= 4,20

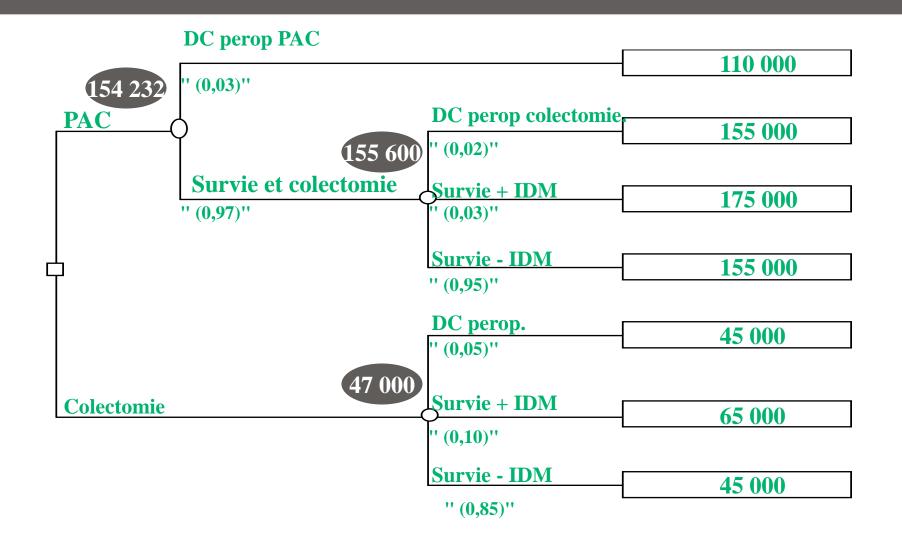
Symbole	Valeur
μ_{ASR}	0,079 / an
μ_{CCR}	0,135 / an
$\mu_{PAC} \ \mu_{MED}$	0,016 / an 0,024 / an
Q_{IM}	0,95

†0,079+0,135+0,016= 0,23 ;1/0,23 = 4,3478; # 0,95/0,23=4,13



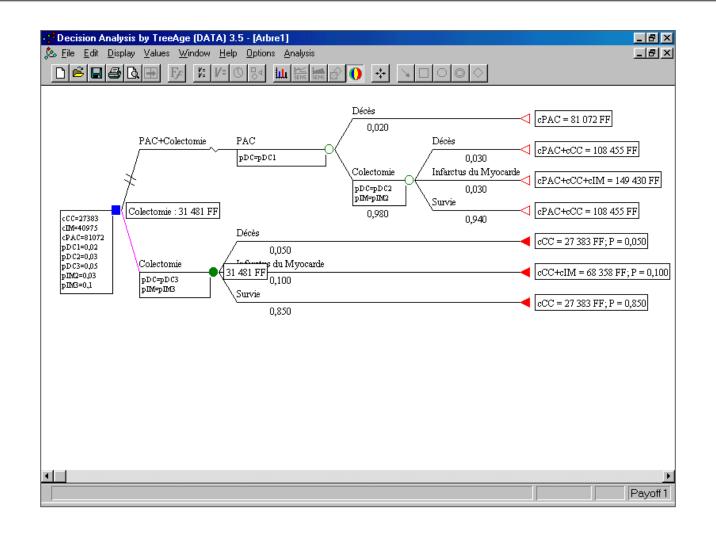
ESPÉRANCE D'EFFICACITÉ DE CHAQUE OPTION

ARITHMETIQUE DU CALCUL



ESTIMATION DES COÛTS GHM

	Privé	Public
Pontage	110 000	190 000
Colectomie	45 000	80 000
Infarctus	20 000	42 000



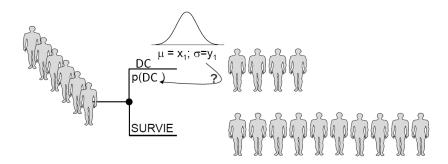
ESPÉRANCE DE COÛT DE CHAQUE OPTION

CHAÎNAGE ARRIÈRE - ESPÉRANCE DE COÛT

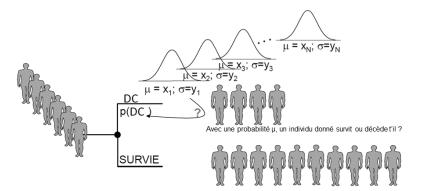
RATIO SURCOÛT - SURCROIT D'EFFICACITÉ

	Coût	Efficacité	ΔC	ΔΕ	ΔC/ΔΕ
Colectomie seule	47 000	3,97	-	-	-
Pontage + Colectomie	154 232	4,12	107 232	0,15	715 000




Modèles de Transition Multi-Etats

Les deux Variantes des Modèles Multi-États



Modèles de cohorte

Fluctuations d'échantillonnage

Modèles de Microsimulation

Variabilité inter-individuelle

MODELE DE TRASITION MULTI-ET ATS

Modèle de transition Multi-état ou *State-Transition Model*:

« C'est une approche intuitive, souple et transparente de la modélisation analytique décisionnelle comprenant à la fois la simulation de cohorte avec le modèle de Markov et la Microsimulation individuelle (Monte Carlo d'ordre 1) »*.

Microsimulation ou *Individual-Level State-Transition model*:

- Fonctionne au niveau de l'entité du comportement individuel (virus, personne, famille, etc.);
- Simule une grande population représentative de ces entités;
- Mais: vise à tirer des conclusions sur les niveaux agrégés (population cible, pays, sous-population des patients)

UNITÉS D'ANALYSE

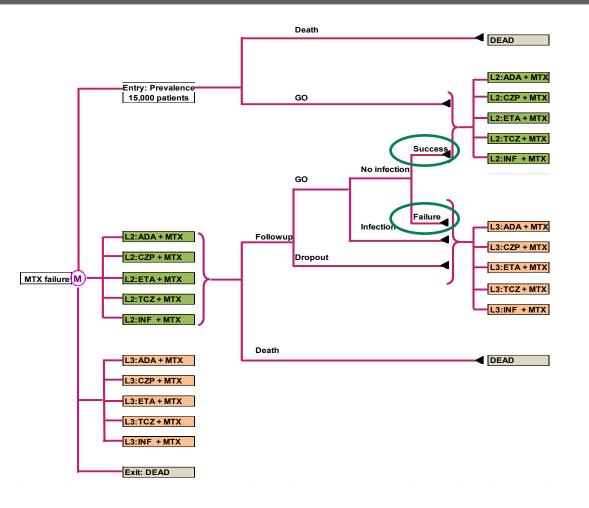
Population

- Population ouverte/fermée;
- Interactions;
- Facteurs externes:
 - Environnement;
 - Economie...

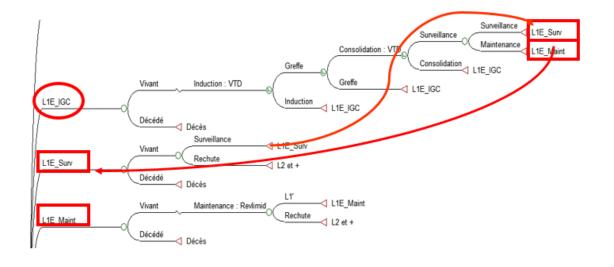
Unité d'analyse

Biographie:

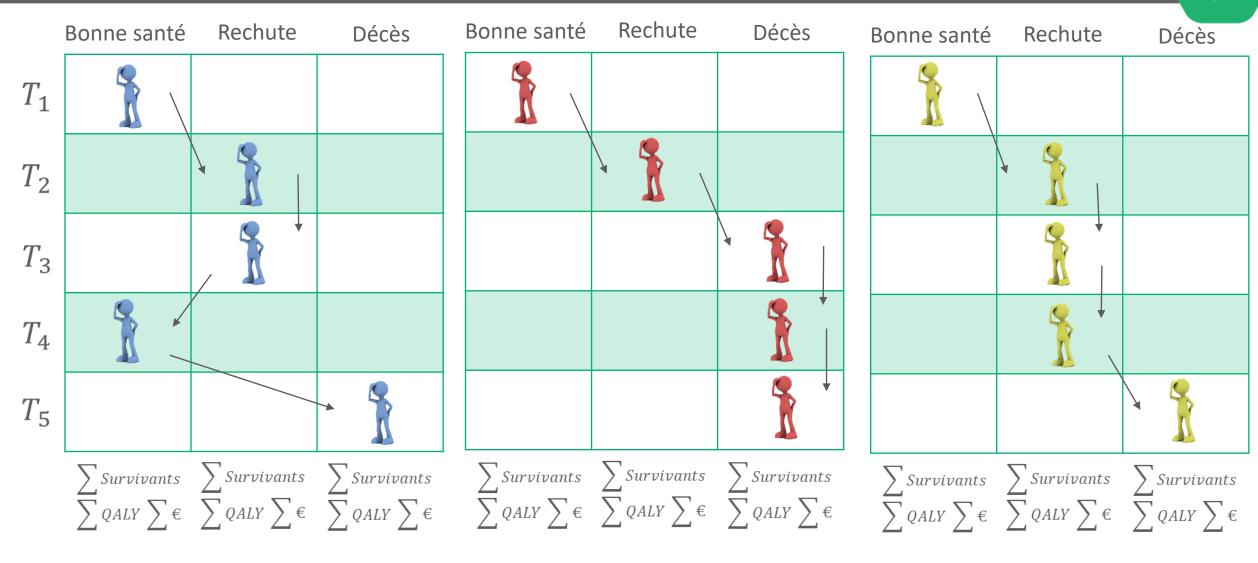
- Facteurs de risque;
- Maladies;
- ..


Analyse

Pour évaluer à court et à long terme:


- Santé;
- Interventions;
- technologies; ... de la population entière.

MODÈLE DE COHORTE MULTI-ÉTATS fluctuation d'échantillonnage



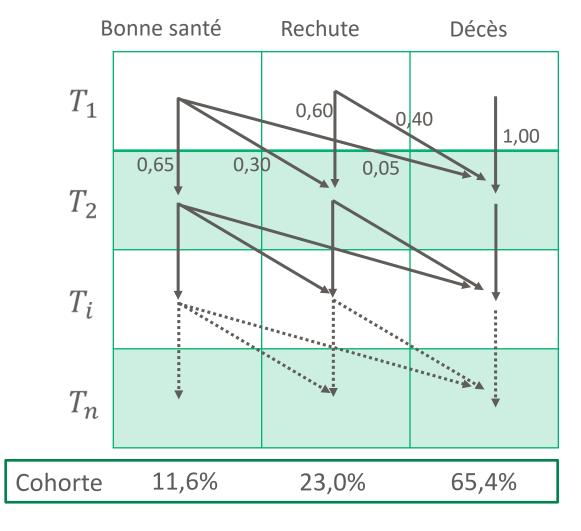
Les Sorties d'un Cycle Sont les Entrées du Cycle Suivant

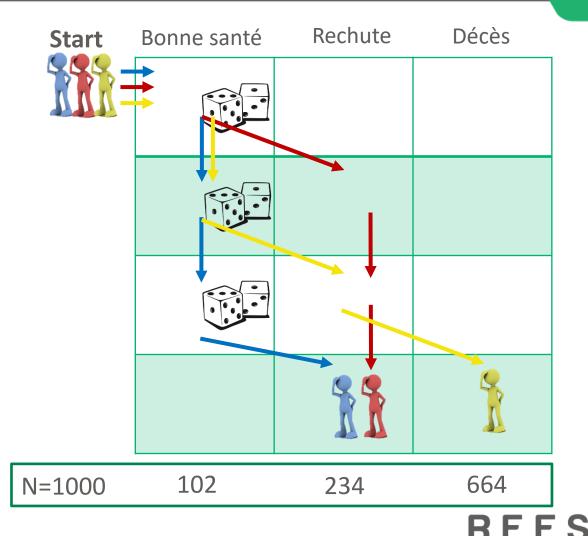
MODELE DE MICROSIMULATION INDIVIDUELLE

COHORTE VS MICROSIMULATION

Simulation de cohorte

Les résultats sont estimés pour la cohorte dans son ensemble sans tenir compte des résultats pour les patients individuels au sein de cette cohorte


Microsimulation


Les résultats sont modélisées **pour chaque patient**, puis la moyenne est prise sur un échantillon suffisamment grand de patients

Modèle de Cohorte *vs* Microsimulation Simulation Monte Carlo

^{*} Siebert et al. 2012 State-Transition Modeling: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-3

Microsimulation vs Cohorte

- + Un avantage de l'utilisation d'une Microsimulation individuelle est la capacité
 - à modéliser les caractéristiques individuelles en tant que variables continues
 - à évaluer des stratégies d'intervention dynamiques dont les décisions futures dépendent des caractéristiques actuelles et passées des patients.
 - Dans les modèles de cohorte, les variables continues (par exemple, la tension artérielle) doivent être catégorisées
- Les modèles de microsimulation nécessitent **plus de temps de calcul**, ce qui peut être important si des analyses de sensibilité probabilistes ou des analyses de valeur d'information sont effectuées.

Introduction à la Microsimulation

Histoire des modèles de microsimulation:

- peuvent être tracés des différentes sources
- Guy Orcutt's : imitation des expériences naturelles en économie, développement du modèle de microsimulation de comportement dynamique DYNASIM (Orcutt et al. 1957, 1961, 1976)
- policy makers (décideurs): besoin d'un outil qui permet de déterminer les gagnants et les perdants de ce changement dans le système de prestations. Par conséquent, plusieurs gouvernements ont maintenant des modèles « tax-benefit ».

Domaines d'application:

- Système de Santé : comparaison des technologies de santé, optimisation des processus cliniques, l'impact économique etc.
- Science sociale : modèle impôts-prestations, migration, modèle de retraite
- Ingénierie : fabrication, gestion du trafic, transportation

Modèle de Cohorte vs Microsimulation

	Modèle de cohorte	Microsimulation
Facilité de développement du modèle	Supérieure	Inférieure
Facilité de débogage du modèle	Supérieure	Inférieure
Facilité de communication avec les non-experts	Supérieure	Inférieure
hypothèse de Markov d'absence de mémoire	Oui	Non
Facilité de modélisation en sous-groupes	Supérieure	Inférieure
Danger d'explosion du nombre d'états	Oui	Non
Répartition des résultats (pas seulement des moyennes)	Possible, mais techniquement plus difficile	Oui
Rapport des antécédents individuels des patients	Non	Oui
Logiciel d'analyse décisionnelle disponible	Oui	Oui (besoin de connaissances avancées)

POHEM: POpulation HEalth Model

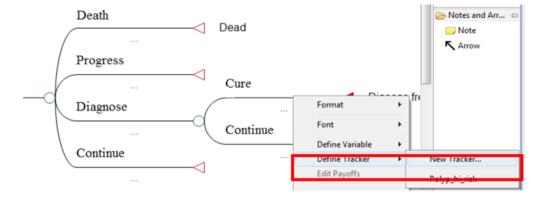
- Le Modèle sur la santé de la population (POHEM) est un modèle de microsimulation de santé élaboré au Canada au début des années 1990.
- POHEM réunit de riches données multivariées, provenant de diverses sources, pour simuler le cycle de vie de la population canadienne.
- Le modèle **simule** dynamiquement les états de santé des individus, les facteurs de risque et les déterminants de la santé, afin de décrire et de projeter les résultats sanitaires, y compris l'incidence de la maladie, la prévalence, l'espérance de vie, la qualité de vie et l'espérance de vie ajustée sur la qualité.
- De plus, le POHEM a été conceptualisé et construit afin de pouvoir évaluer l'impact des interventions sur l'état de santé des Canadiens.
- A l'échelle internationale, POHEM et d'autres modèles de microsimulation ont été utilisés pour informer les décideurs des différents systèmes de santé sur les problèmes de santé complexes.

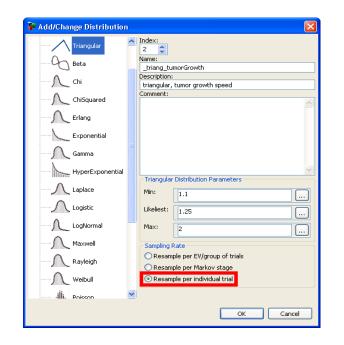
PROGRAMMATION SOUS EXCEL?

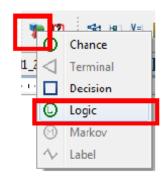
Microsoft Excel

- Universellement disponible et largement accepté
- L'utilisation de Visual Basic pour Applications (VBA) lui donne une grande flexibilité
- Les feuilles de calculs rendent la mise en place d'interface du modèle relativement facile
- Le temps d'exécution du modèle peut être un problème quand il y a des interactions fréquentes entre VBA et la feuille de calcul
- La réalisation du modèle de microsimulation demande beaucoup de programmation de VBA qui n'est pas assez transparent pour les agences d'ETS

```
Sub PSA()
Dim x As Integer, trial As Integer, a As Integer, infiniteX As Integer, i As Integer
  Dim goodTrials As Integer
  Dim rge As Range
  Dim bErrorInTrial As Boolean 'new
  Dim FlagNetBen As Boolean
  Dim iterNumber As Intege
  iterNumber = 1000
 For i = 0 To iterNumber
Range("PSA.Randcolumn").Value = Application.Index(RandomFullPSA, , i + 1)
For Each rge In Range("macroPsaTrial") 'Test trial for any errors
         If Application. Worksheet Function. Is Error (rge) Then
           bErrorInTrial = True
           Exit For
         End If
     If bErrorInTrial = False Then 'If there is no error in trial then save trial result
       Range(Range("macroPsaStart").Offset(goodTrials, 1), Range("macroPsaStart").Offset(goodTrials, 9)).Value =
Range("macroPsaTrial"). Value
      Application.StatusBar = "Simulation: " & Round(goodTrials / 1000 * 100) & "% complete"
      goodTrials = goodTrials + 1
       If goodTrials = 1000 Then Exit For 'The required trials have been reached, then stop the loop
     Else 'There is an error in trial then update the number of errors
      If infiniteX > 100 Then 'If error in trial persists for more than 100x, then exit sub and report error
        Application.StatusBar = "Error found in PSA parameter. Please check your distributions."
         GoTo InfiniteLoopExit
      End If
      bErrorInTrial = False 'Reset bErrorInTrial tracker
    Call UpdateProgressBar(Round(((goodTrials - 1) / 1000) * 100) / 100, False)
  'Net benefit
Application.StatusBar = False
InfiniteLoopExit: 'goto used only if there is an infinite loop in PSA trials
  Range("bPSA").Value = False
 Sheets("PSA Results").Select
 Application.CutCopyMode = False
End Sub
```



TRAITEMENT SOUS WINDOW: TREEAGE?




TreeAge

- Variables-compteurs (*tracker*) pour capturer les caractéristiques individuelles;
- Nœuds logiques (*logic node*) pour programmer les transitions;
- Matrice globale (*global matrix*).

$$M = \begin{pmatrix} Pat1 & HealthState(t0) & HealthState(t1) & \dots \\ Pat2 & HealthState(t0) & HealthState(t1) & \dots \\ \dots & HealthState(t0) & HealthState(t1) & \dots \\ Patn & HealthState(t0) & HealthState(t1) & \dots \end{pmatrix}$$

RECAP : Modèle de Cohorte vs Microsimulation

Avantages:

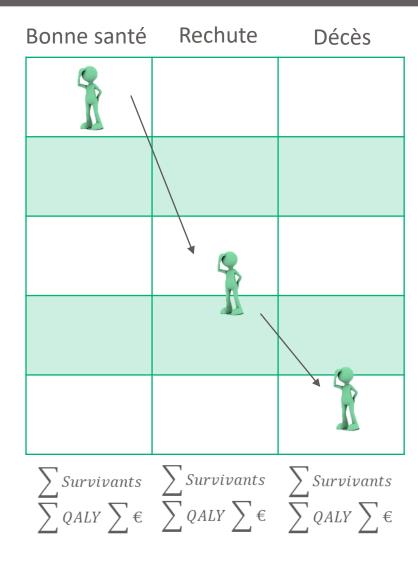
- analyse déterministe presque instantanée
- analyse probabiliste de second ordre

- utilise les données empiriques ou des distributions statistiques des caractéristiques de base des sujets
- peut modéliser l'incertitude du premier ordre dans la survenance d'événements individuels
- modèle a la «mémoire»
- peut modéliser les switches entre plusieurs lignes de thérapie

Limites

- Sans mémoire
- Capacité limitée à modéliser l'hétérogénéité des cohortes
- nécessite l'augmentation du nombre des états de Markov pour modéliser des événements en l'absence de mémoire
- temps requis pour les cycles de microsimulation
- problématique de combiner la microsimulation avec
 l'analyse de sensibilité probabiliste
- analyse de sensibilité déterministe nécessite des cycles de microsimulation complets

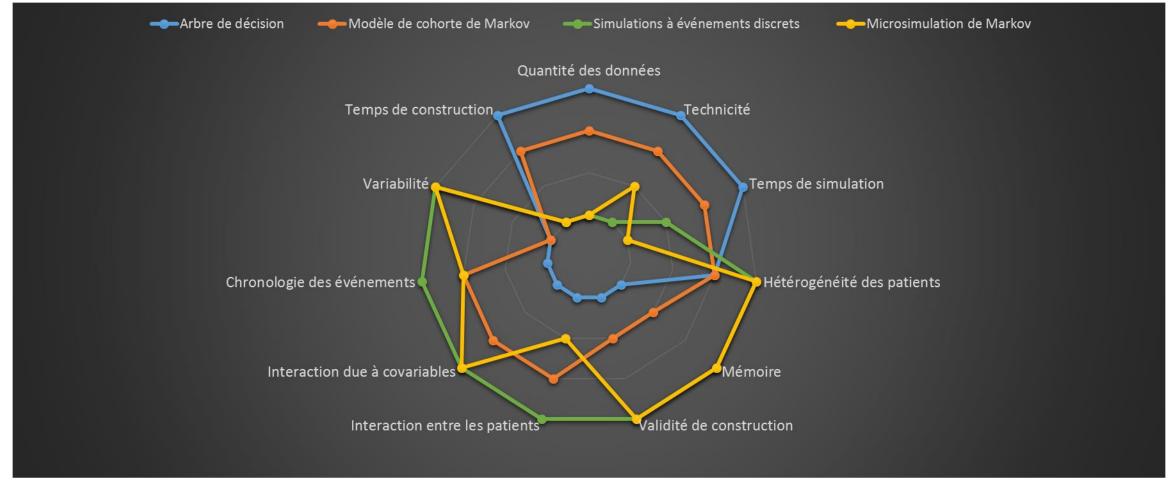
Modèle de Cohorte vs Microsimulation


State-Transition Modeling: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-3:

« If the decision problem can be represented with a manageable number of health states that incorporate all characteristics relevant to the decision problem, including the relevant history, a cohort simulation should be chosen because of its transparency, efficiency, ease of debugging, and ability to conduct specific value of information analyses. If, however, a valid representation of any aspect of the decision problem would lead to an unmanageable number of states, then an individual-level statetransition model is recommended. Validity should not be sacrificed for simplicity. »

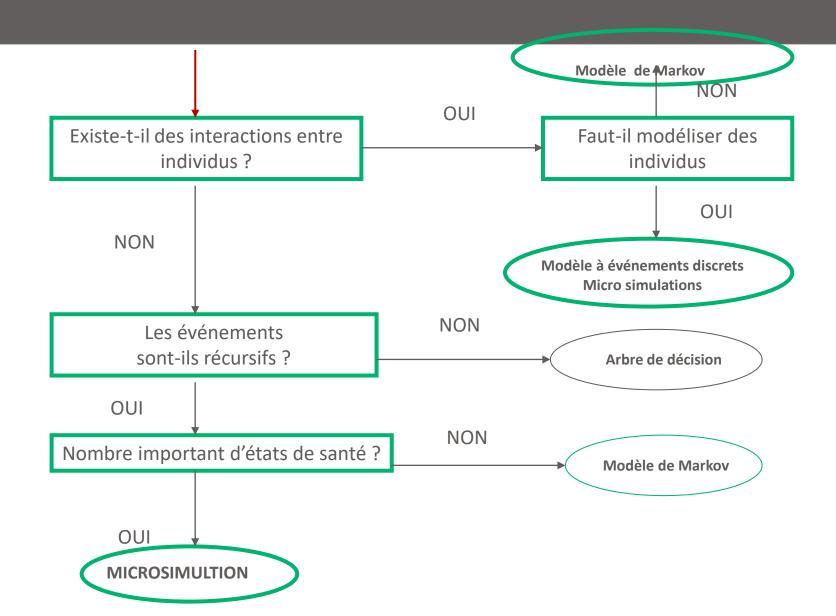
Simulation à événements discrets

SIMULATION À ÉVÉNEMENTS DISCRETS (SED)



Caractéristiques principales :

- Approche de simulation au niveau individuel. Dans ce type de simulation le système évolue de façon discrète dans le temps d'un événement à l'autre;
- Les **événements** sont des éléments clés de SED qui recouvrent tout ce qui peut arriver à une **entité** (patients) au cours de la simulation
- Le moment ou l'événement se produit est l'élément clé (se substituant aux états de santé) dans une simulation qui se déroule de façon continue dans le temps (et non sur des intervalles discrets comme ds un markov) et qui intègre des influences croisées entre variables des contraintes de rareté



FORCES ET FAIBLESSES DES DIFFÉRENTES MODÈLISATIONS

COMMENT CHOISIR?

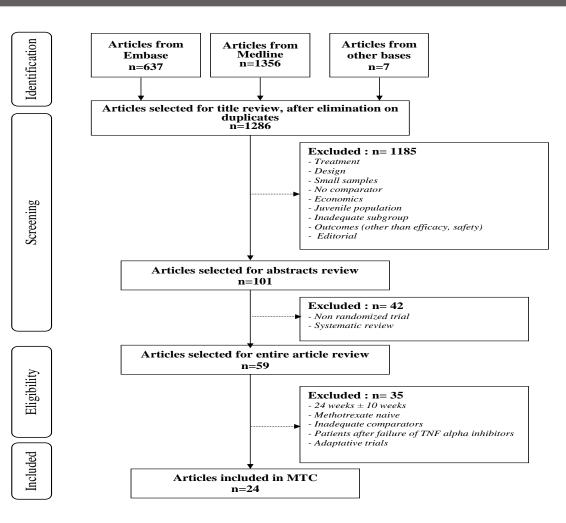
SUR LA BASE DE QUELS CRITERES ?

- Quel est le bon degré de granularité ?→unité de modélisation :
 - agrégée sur un groupe de sujets présentant des caractéristiques communes (modèle de cohorte/ agrégé)? ou
 - Individu centrée pour refléter la spécificité des antécédents médicaux de chacun (modèle individu centré /microsimulation/SED) ?
- Comment intégrer l'incertitude ? :
 - Accepte-t-on de travailler à partir d'une probabilité moyenne de survenue (modèle déterministe) ? ou
 - S'interesse-t-on à la variabilité des profils cliniques (modèle probabiliste d'ordre 1) ou à la difficulté d'appréhender les vraies valeurs des paramètres dans la population (modèle probabiliste d'ordre 2)
- le temps doit il être pris en compte de façon implicite ou explicite? Doit il être mesuré à intervalles discrets (microsimulation) ou de façon continu (SED)?
- les individus interagissent ils entre eux?
 - Ils n'ont pas d'interaction entre eux : \rightarrow modèle multi-états/ de Markov ou de microsimulation
 - Ils interagissent-ils entre eux \rightarrow modèle dynamique /à compartiments

Comment documenter les modèles ?

TYPOLOGIE DES REVUES BIBLIOGRAPHIQUES

- Revue critique (narrative) :
 - Pas de protocole d'interrogation prédéfini
 - Sélection subjective des articles
 - Un expert choisi les études « les plus importantes », les commente et donne un avis souvent « politique »
- Revue systématique exhaustive à la manière « cochrane »
 - Avec protocole d'interrogation prédéfini
 - Exhaustivité dans la recherche les articles :2 bases au moins
 - Sélection sur critères d'inclusion/ d'exclusion / de qualité
- Revue systématique ciblée (overview, rapid review method):
 - Avec protocole d'interrogation prédéfini,
 - Absence d'exhaustivité des données, 1 base utilisée
 - Sélection partiellement argumentée des données
- Revue systématique mixte pour la modélisation économique
- Revue systématique quantitative ou méta analyse
 - Regroupement en un seul indice des quantités d'effet


REVUE COCHRANE SYSTÉMATIQUE EXHAUSTIVE QUALITATIVE (6MOIS)

- 1. Formulation d'une question principale unique en s'aidant des critères PICOS : Population-cible, intervention, comparateur, outcome, schéma d'étude
- 2. Définition ex ante des critères d'éligibilité et de non éligibilité des études
- 3. Identification des descripteurs correspondants (CISMef, EMTREE, MESH ou autres)
- 4. Ecriture des équations de recherche (une ou plusieurs dizaines) dans les bases documentaires (deux au moins) sur la période calendaire retenue
- 5. Sélection et classement des abstracts sous END Notes, répondant aux critères d'éligibilité, fusion, sélection et présentation du diagramme de flux
- 6. Évaluation de la qualité des études (validité interne-externe)
- 7. Tableau Résumé des Données Colligées (SOF (Summary of Findings) : items à définir a priori, 3 / 4 jours de travail) + Résumé en language simplifié (PLAIN language); Finalité Présentation claire des sources

«FLOWCHART » DÉCRIVANT LE CHEMINEMENT DU PROCESSUS DE SÉLECTION

Template PRISMA 2009

REVUE SYSTÉMATIQUE EXHAUSTIVE : QUANTITATIVE (3 MOIS)

1. Synthèse données probantes : MA, CI, MTC

2. Estimation de l'hétèrogénéité : Isquare de Higgins

3. Neutralisation des Biais : méta régression

4. Vérification de la cohérence sur les boucles (MTC)

REVUE SYSTÉMATIQUE CIBLÉE (1-6 MOIS)

- Durée :1 à 6 mois
- Personnes impliquées : 2ETP;
- Recherches systématiques sur un nombre réduit de bases documentaires;
- Sources privilégiées : meta analyse, ECR;
- Sources à écarter : séries cliniques, étude de cas;
- Champs explorés : qualité de l'étude, données cliniques, données économiques;
- Consultation quasi systématique des KOL

REVUE SYSTÉMATIQUE MIXTE (MODÉLISATION)

- Sélection des valeurs après justification,
 - une revue méthodique complète pas envisageable sur tous les paramètres, Toutes les informations ne peuvent pas être obtenues en une seule requête structurée PICOS. (pour le dépistage CCR UE 120 questions PICOS)
 - prendre des raccourcis : modèles ace existants, guidelines, revues systématiques, chaîner les auteurs
 - se concentrer sur les v.a. a forts impacts sur le résultat et accepter de s'arrêter
 - Privilégier la précision plutôt que la sensibilité et les jugements d'experts
- Hiérarchie des preuves : différente selon les champs
- Extraction : Construction base Excel; libellés définis à priori pour appréhender les différences entre études et l'hétérogénéité des études
- Synthèse: est ce qu'il vaut la peine de faire une méta? Oui pour l'efficacité

57

UNE HIERARCHIE DES PREUVES QUI VARIE SUIVANT LES CHAMPS EXPLORES

	Revue narrative	Revue systématique exhaustive	Revue systématique rapide ciblée	Reco de bonnes pratiques	Biblio des experts	Jugement d'experts	Travaux originaux
Efficacité clinique	-	1	-	-	-	-	-
Histoire naturelle de la maladie	-	-	1	-	-	-	-
Evénements indésirables	-	-	1	-	-	-	1
Cm de ressources liée au ttx	-	-	1	-	-	-	1
Cm de ressources liée aux EI	-	-	-	-	1	-	1
Cm de ressources liée au monitoring	-	-	-	1	-	2	-
Estimations des coûts	2	_	-	1	1	-	-
Score d'utilité	-	1	-	-	-	-	-

Passer de l'expérience de pensée à la simulation numérique

INCERTITUDE ET MÉDECINE

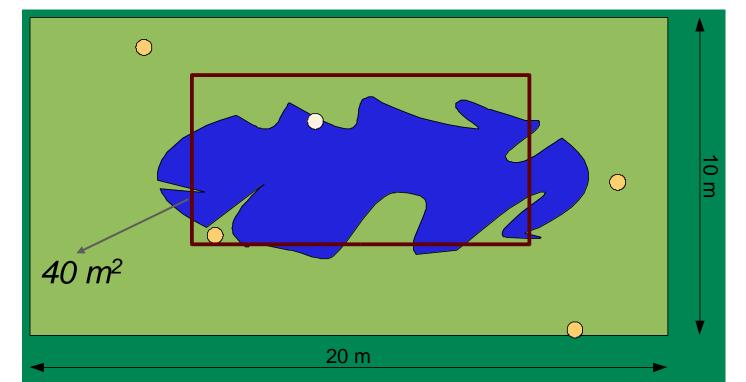
- L'incertitude est consubstantielle à l'activité médicale. Quand un médecin prend une décision c'est toujours dans l'angoisse de prendre la mauvaise
- Les analyses économiques sont entachées de la même caractéristique à la fois sur l'estimation de l'efficacité, des coûts et des conséquences de la pathologie
- Le fait qu'on soit dans l'incertitude doit inciter à se poser des questions : « What if ?
 » : Qu'est ce qu'il se passerait si ?.
- L'analyse de sensibilité a pour but d'évaluer la stabilité des conclusions d'une analyse par rapport aux hypothèses émises
- Il y plusieurs manières de la faire

TRAITEMENT DE L'INCERTITUDE DANS LES ETUDES ECONOMIQUES

On souhaite:

- Représenter l'incertitude associé à l'ensemble des paramètres incertains
- Propager ces incertitudes dans le cadre d'un modèle numérique → pas de solution simple (ou connue) pour la loi de probabilité des sorties → recours à la simulation [les statistiques sont accumulées durant la période de simulation pour évaluer les grandeurs d'intérêt à la fin de l'exécution du programme]
- Analyser les résultats du modèle sur la grandeur d'intérêt incertaine de manière analogue à celles d'un modèle statistique (variance, intervalles de confiance) pour estimer la valeur qui serait la plus proche possible de la « vraie » valeur du paramètre inconnu

SIMULATION : DÉFINITION


- Estimation : chercher à donner la valeur la plus proche possible de la valeur « vraie » du paramètre inconnu
- Simulation : ⁺Simuler c'est faire des expérimentations sur un modèle.
 - Pour que les équations mathématiques du modèle puissent être comprises par l'ordinateur, il faut les traduire en algorithmes numériques, les seules formulations qu'un ordinateur soit capable de traiter.
 - Les résultats des calculs sont stockés dans une base de données numériques pour évaluer les grandeurs d'intérêt à la fin de l'exécution du programme en l'absence de solution analytique connue pour la loi de probabilité des sorties du modèle

 R E E

APOLOGUEE DU LAC : EX D'ESTIMATION PAR SIMULATION DE MONTE CARLO

Calcul de la surface d'un lac; surface du terrain $10*20=200\text{m}^2$. 5 tirs effectués. $1/5^e$ des tirs touchent le lac \rightarrow surface du lac = 200m^2 /5 = 40m^2

Attention à procéder à un nombre suffisant de tirages!

Incertitude = incapacité à donner une valeur unique à un événement aléatoire

- Quatre catégories d'incertitude
 - Incertitude par essence: variabilité intrinsèque de la grandeur concernée due aux fluctuations d'échantillonnage; « on sait jamais ce qui va arriver »
 - Incertitude paramétrique sur les valeurs exactes des paramètres d'entrée du modèle « on d'interroge sur la vraie valeur d'un paramètre » Tout ce qui est incertain est probabilisé, pas de paramètres fixes; à la sortie on n'a pas un valeur mais une distribution de valeur
 - Incertitude structurelle due aux simplifications, aux hypothèses du modèle
 - Hétérogénéité des tableaux cliniques
- La différence porte sur la capacité à réduire l'incertitude: Les incertitudes par essence sont irréductibles. Les incertitudes par ignorance, (vraie valeur, hétérogénéité, ou construit du modèle) sont réductibles par apport de données nouvelles, par stratification ou par adoption d'hypothèses alternatives.

 REES

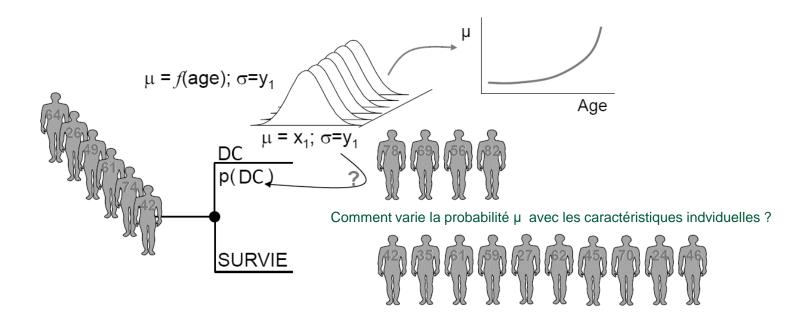
63

VARIABILITÉ-INCERTITUDE-HÉTÉROGÉNÉITÉ

Sources des incertitudes CC	Nature de l'incertitude	Autre terminologie	Analogie avec la régression
Variabilité stochastique	Incertitude par essence : variation purement aléatoire entre les mesures successives d'un même phénomène, →irréductible	Variabilité. Erreur de Monté Carlo. Incertitude d'ordre 1 ou à une dimension 1D	Erreur aléatoire
Incertitude sur la valeur des paramètres	Incertitude par ignorance, →réductible	Incertitude du second ordre ou à deux dimensions 2D	Erreur standard de l'estimateur
Hétérogénéité des situations personnelles	Variabilité interindividuelle attribuable à la diversité des tableaux cliniques, → Analyse en sous groupes	Variabilité. Hétérogénéité observée ou expliquée	Coefficients beta (la valeur de la variable dépendante change selon les patients)
Incertitude structurelle	Bien fondé des hypothèses sur la structure du modèle de décision → situation de référence	Incertitude sur le construit de la modélisation	Forme du modèle de régression (linéaire, log linéaire).

ANALYSE PROBABILISTE 3 MÉTHODES

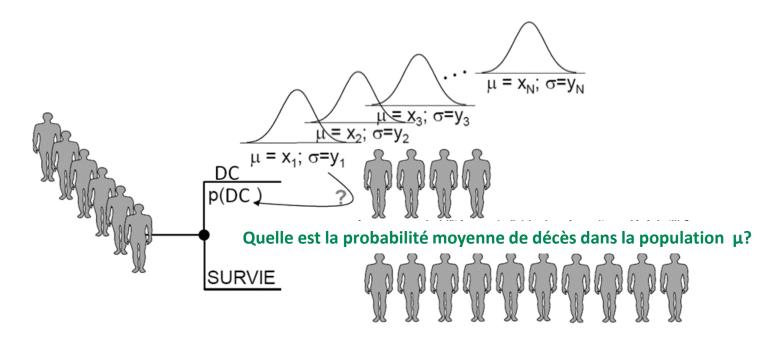
- Monte Carlo: obtenir la distribution d'échantillonnage à partir de la distribution a priori des paramètres du modèle: analyse de sensibilité paramétrique.
- Bootstrap : obtenir la distribution d'échantillonnage à partir de la distribution empirique des observations par tirage au sort avec remise: analyse de sensibilité non paramétrique
- Distribution a posteriori Bayésienne. On choisit une distribution a priori des paramètres pour représenter l'incertitude de la moyenne dans la population et sa variabilité et on actualise l'information, par apport de données nouvelles. À la sortie on a une distribution de valeur.



TYPES DE MONTE-CARLO

- Simulation de premier ordre : l'itinéraire d'un individu est tiré au hasard Le devenir d'un patient dans l'arborescence:
 - On compare la valeur (R) prise par une variable aléatoire tiré d'une loi de distribution uniforme comprise entre 0 et 1 à une probabilité fixe (p) de chacun des événénements qui se trouve sur son chemin
 - Sur un grand nombre d'itinéraires, on retrouve la probabilité de survenue de chaque conséquence possible. Seule la variabilité est étudiée, l'incertitude ne l'est pas car la stratégie optimale reste toujours la même.
- Simulation de second ordre : tirage au sort de chaque variable aléatoire en fonction de sa loi de probabilité, puis calcul des résultats attendus
 - Prise en compte de l'incertitude sur les variables
 - Selon les valeurs obtenues, le choix de la stratégie optimale pourra différer
- Simulation de troisième ordre : combinaison des deux simulations précédentes
- TreeAge® permet les trois variantes

STRATIFICATION DE LA POPULATION EN FONCTION DE L'HÉTÉROGÉNÉITÉ DES TABLEAUX CLINIQUES



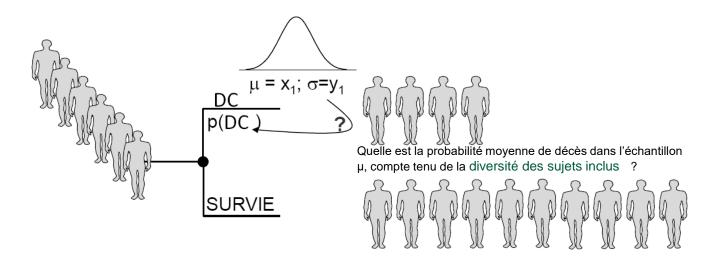
Les patients dans la vraie vie (et donc ceux dont on simule le devenir dans le modèle) présentent des caractéristiques différentes (âge, sexe, stade de la maladie, etc...). Ces caractéristiques ont une influence sur le taux de décès

Source : adapté de MS Roberts 2013

INCERTITUDE PARAMÈTRIQUE D'ORDRE 1 variabilité inter-individuelle

La probabilité de décès (μ) dans la population, n'est pas connue avec certitude,, la valeur de la moyenne y et de l'erreur standard σ de chaque échantillon sont différentes d'une itération à l'autre

Source : adapté de MS Roberts 2013

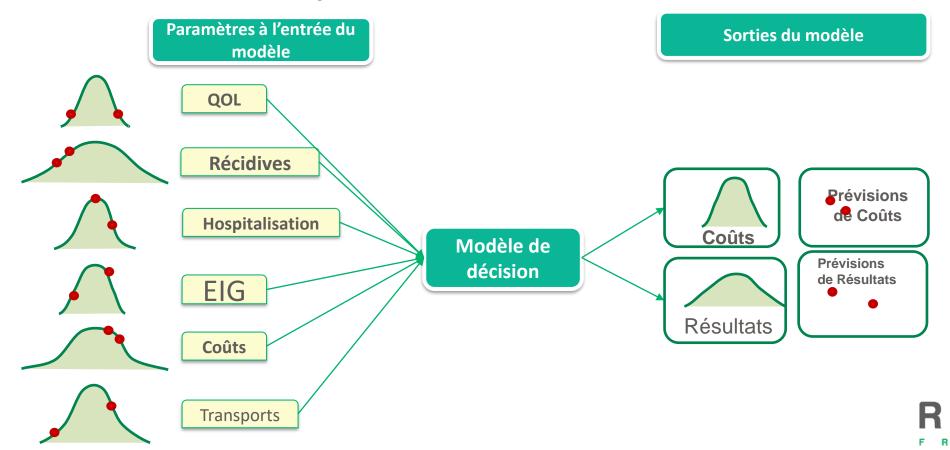


SIMULATION PARAMETRIQUE DE MONTE CARLO DU 1ER ORDRE variabilité inter-individuelle

- Les sujets sont envoyés un par un dans le modèle
- Au franchissement du premier embranchment de l'arborescence, on simule une des réalisations possibles de la loi Uniforme [0,1]:
 - Si sa valeur est comprise [0, 0.1[, le sujet décède
 - Si sa valeur est comprise [0.1, 0.3[, le sujet tombe malade
 - Si sa valeur est comprise [0.3, 1], il reste en bonne santé
 - Lorsque l'experience est répétée sur un grand nombre d'individus, les effectifs relevés dans les différents état de santé sont les mêmes que ceux obtenus dans un modéle de simulation agrégé de cohorte
- Le modèle permet de retracer l'histoire de la maladie
 - Une variable binaire permet de distinguer le premier épisode de celle ci et les rechutes
 - La valeur des probabilités de transition seront fonction de la valeur de la variable binaire

INCERTITUDE ALÉATOIRE D'ORDRE 2 fluctuations d'échantillonnage

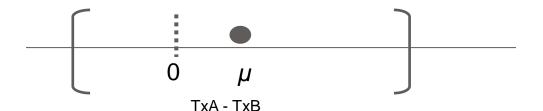
Les tirages selon la loi de probabilité adoptée pour décrire la variabilité des résultats dans l'échantillon donne un éventail de taux de décès possibles. De multiples tirages sont donc nécessaires pour obtenir une estimation stable de la probabilité moyenne de décès.


Source : adapté de MS Roberts 2013

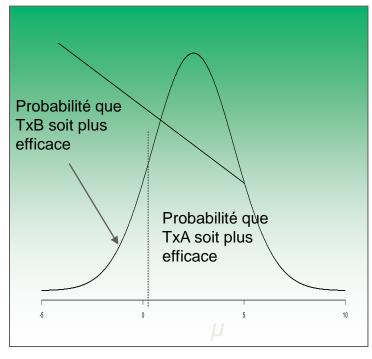
SIMULATION DE PARAMETRIQUE DE MONTE CARLO D'ORDRE 2 : fluctuation d'échantillonnage

« Réunir Les Incertitudes Dans De Grands Sacs D'ignorance »

- Faire une typologie de ces sacs,
- définir leur forme à partir d'un petit nombre de paramètres
- simuler des tirages au hasard issus de ces lois


MODALITÉS DE MISE EN ŒUVRE fluctuation d'échantillonnage

- A chaque variable aléatoire, on associe non pas une probabilité moyenne mais une distribution de probabilité qui décrit leur fréquence d'apparition anticipée;
- Pour une famille arrêtée de courbes, on caractérise la valeur de ses paramètres théoriques non observables qui simule le mieux la réalité observée;
- Une fois caractérisée la loi de distribution, on tire au sort la réalisation de chaque variable;
- l'incertitude est incorporée et se propage dans tout le modèle;
- le résultat d'une analyse quantitative des risques est une distribution de probabilité
- Sur un grand nombre de tirages, la moyenne des sorties du modèle approche leur espérance


INTERVALLE DE CONFIANCE vs DISRIBUTION DE PROBABILITE

Conclusion Fréquentiste :

Estimateur ponctuel (avec IC à 95 %)

« Pas de différence significative entre TxA et TxB »

TxA - TxB

« 75 % de chance que le TxT A soit plus efficace que le traitement TxT B »

Conclusion Bayésienne:

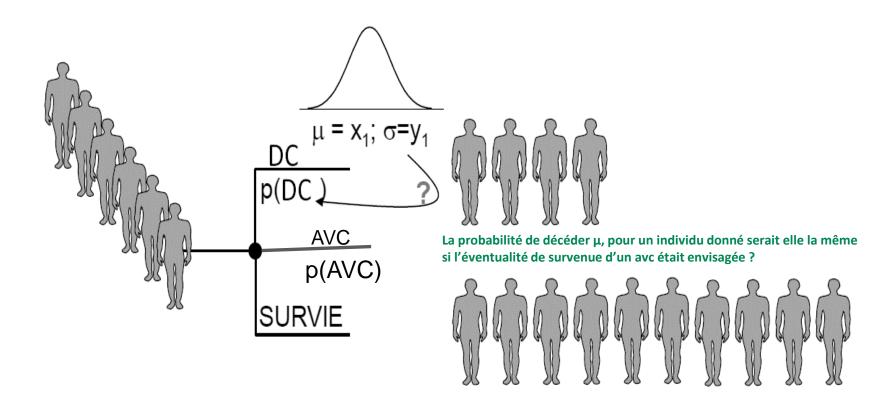
Estimation par une distribution de Probabilité

FORMES FONCTIONNELLES RECOMMANDÉES fluctuation d'échantillonnage

- Probabilités [0;1]: loi Beta
- Risques relatifs [0 ;∞[: log normale ou loi Gamma
- Utilité]-∞;1] : loi Beta ou Normale tronquée à 1
- Coûts [0 ;∞[loi Gamma ou Lognormale
- Valeurs inconnues : Loi Uniforme non informative

ESTIMATION DU RDCR PAR MISE EN OEUVRE D'UNE SIMULATION DE MONTE CARLO D'ORDRE 2 fluctuation d'échantillonnage

- La technique du Monte Carlo d'ordre 2 est opérationnalisée en quatre étapes :
- 1. Tirage aléatoire à partir des distributions de probabilité d'une valeur pour chaque paramètre caractéristique du **groupe test** et calcul du coût total et de l'efficacité totale moyens
- 2. Tirage aléatoire à partir des distributions de probabilité d'une valeur pour chaque paramètre caractéristique du groupe contrôle et calcul du coût total et de l'efficacité totale moyens correspondants
- 3. Calcul par différence du ratio différentiel coût résultat correspondant
- 4. Répétition de l'opération B fois pour obtenir une estimation de la distribution du RDCR dans le plan ACR



76

LES TRACES DE LA SIMULATION NUMÉRIQUE

S	Т	U	V	W	Х	Υ	Z	AA	AB	AC	AD A	E AF	AG	AH	Al	AJ	AK
			1	1		Trans	itions		ı				CO	ST-EFFECT	TIVENESS RES	ULTS	.1
Mortalité en	EHC RFHE3001	EHM1 à EHC	1: paramètre	s log_normal	EHM2 à EHC	2: paramètres	log_normal	Mortalité EHI	M1:log-norma	Mortalité EH	Simulation						Diff
Mortalité 30jrs EHC1	Mortalité 30jrs EHC2	Rif	_Cons	In_sig	Lac	_Cons	In_sig	_Cons	In_sig	Cons	In sig	QALYs	Coût	QALYs	Coût	QALYs	
11,1%	7,7%	1,094415	1,795881	0,6234861	-1,094415	1,383009	0,5532788	5,361574	0,6471332	0,0267796	0,8002098	1,78	8 555,47	2,09	14 411,43	0,32	5 855.5
,	·					·			,			1,15	5733,66	1,54	10881,08	0,40	5147,
0,1280	0,0700	1,0533	1,5040	0,4970	-0,7650	1,3931	0,6387	5,1936	0,7060	0,2114	0,8690	0,80	4 582,04	1,17	8 720,30	0,37	4 138,
0,1059	0,0880	0,8056	2,1921	0,7034	-0,9130	1,3916	0,6831	5,6938	0,6179	0,1009	0,8786	1,34	6 121,18	1,64	11 480,09	0,30	5 358
0,0615	0,1041	1,1144	1,6608	0,6083	-0,8648	1,2261	0,4134	5,2763	0,7329	0,2585	0,7416	0,98	5 053,16	1,38	9 719,38	0,40	4 666
0,1223	0,1271	1,1854	2,0390	0,7097	-1,4353	1,5667	0,4537	5,3122	0,6758	0,1169	0,7366	1,43	6 468,43	1,84	12 029,86	0,41	5 561
0,1007	0,1043	1,4357	1.6502	0,6586	-1,8291	1,6710	0,4759	5,3708	0,6938	0,1403	0,8067	1,17	6 243,35	1,67	10 877,42	0,50	4 634
0,1089	0,0568	1,3324	1,6186	0,5263	-0,8799	1,2014	0,4419	5,5173	0,7052	0,2392	0,8290	0,82	5 069,28	1,28	10 085,68	0,46	5 016
0,1071	0,0780	1,3404	1,7286	0,6134	-1,2064	0,9785	0,4105	5,2776	0,6206	0,5826	0,6964	0,87	4 285,30	1,39	9 607,36	0,52	5 322
0,1350	0,0457	1,3111	1,3325	0,5814	-1,2957	1,2077	0,3798	5,4767	0,6896	0,3099	0,7019	0,88	5 241,46	1,35	9 921,67	0,47	4 680
0.1381	0,0924	1,0316	1,7712	0,5061	-0,9468	1,3022	0,7069	5,4540	0,5664	0,4761	0,7059	0,93	4 164,84	1,39	9 636,96	0,46	5 472
0,1139	0,1026	0,6974	1,8559	0,6211	-0,8071	1,3857	0,5963	5,2287	0,7333	0,2211	0,7695	1,05	5 116,83	1,32	9 636,24	0,27	4 519
0,0986	0,1126	1,3769	2,1183	0,9019	-1,2121	1,4612	0,5157	5,3790	0,5760	0,7619	0,5624	1,08	4 624,53	1,51	10 874,15	0,43	6 249
0,1152	0,0449	1,1892	2,0174	0,7603	-0,9306	1,0186	0,5751	5,3554	0,5207	0,1017	0,7273	1,62	7 625,82	2,00	13 425,27	0,38	5 799
0,1291	0,0722	0,9113	1,7532	0,5992	-1,2562	1,2994	0,6018	5,2707	0,6663	0,2023	0,8553	0,93	4 871,88	1,26	9 229,82	0,33	4 35
0,1176	0,0822	1,3959	1,6978	0,5883	-1,1616	1,3490	0,5115	5,1674	0,5234	0,4074	0,5440	1,10	6 010,30	1,62	11 792,16	0,52	5 781
0,1221	0,0663	0,6757	2,0494	0,6636	-0,9497	1,2475	0,4934	5,6956	0,7611	0,1357	0,7232	1,40	6 664,16	1,68	11 919,99	0,28	5 255
0,1466	0,0561	1,0237	1,6434	0,6338	-1,2956	1,3744	0,4994	5,0559	0,6431	0,3585	0,7327	0,88	4 303,22	1,23	9 046,87	0,36	4 743
0,1663	0,0746	1,2197	1,3843	0,6136	-1,1670	1,2367	0,4473	5,1827	0,5705	0,2181	0,7093	0,92	6 712,16	1,32	9 885,27	0,40	3 173
0,1026	0,0588	1,4319	1,7121	0,6899	-1,3261	1,6066	0,6071	5,2756	0,6076	0,1802	0,7762	1,09	5 430,96	1,55	10 950,34	0,46	5 519
0,0747	0,0514	1,5016	1,6438	0,6809	-1,2701	1,4463	0,5291	5,6395	0,5932	0,9896	0,3625	1,10	5 975,39	1,66	11 653,81	0,56	5 678
0,1037	0,0584	1,8114	1,6267	0,6433	-0,8833	1,2048	0,5678	5,3128	0,5094	0,5655	0,6350	0,96	4 841,09	1,67	11 475,06	0,72	6 633
0,1455	0,0472	0,8843	1,6533	0,4917	-1,5075	1,3708	0,5617	5,3402	0,6273	0,1505	0,8140	1,09	6 334,30	1,45	10 112,81	0,36	3 778
0,1328	0,0760	1,2867	1,4979	0,5129	-1,0334	1,3742	0,5584	5,6625	0,6397	1,0931	0,3649	0,95	5 131,86	1,50	10 279,18	0,56	5 147
0,0729	0,1071	1,0405	1,9263	0,5616	-1,6139	1,4218	0,5020	5,2859	0,7181	0,0792	0,7234	1,48	8 310,47	1,84	12 837,17	0,36	4 526
0,0980	0,0489	1,1849	1,8965	0,6813	-1,0180	1,1237	0,5206	5,4262	0,6560	0,1120	0,7399	1,55	7 326,38	1,96	12 735,29	0,41	5 408
0,1083	0,1061	0,9804	1,6903	0,5893	-1,3461	1,3241	0,5202	5,1853	0,6102	0,1581	0,7850	1,14	6 005,43	1,53	10 332,31	0,38	4 326
0,1051	0,1233	1,1835	1,7740	0,6377	-1,2387	1,5474	0,4262	5,4529	0,5924	0,2888	0,5593	1,27	6 541,07	1,73	11 664,77	0,46	5 123
0,1447	0,0657	0,7385	1,8315	0,6172	-1,2403	1,1805	0,4206	5,1980	0,7104	0,4639	0,6528	1,02	5 110,45	1,32	8 725,71	0,30	3 615
0,1281	0,0925	0,6539	1,8651	0,7101	-1,2107	1,0767	0,5028	5,2130	0,7161	0,2055	0,6673	1,30	5 502,40	1,57	10 855,37	0,27	5 35
0,1516	0,0678	0,7825	1,8333	0,5909	-0,8534	1,4481	0,5932	5,0495	0,6994	0,9329	0,3869	1,05	4 809,33	1,37	9 647,75	0,32	4 838
0,1190	0,0788	0,4373	1,8890	0,4248	-1,5323	1,5377	0,5086	5,5271	0,7304	0,2397	0,8071	0,97	5 405,22	1,18	8 599,06	0,21	3 193

INCERTITUDE SUR LA STRUCTURE DU MODÈLE

La structure actuelle du modèle est-elle correcte ? les modalités de prise en charge, les durées de traitement et les critères de jugement sont ils les bons ?

Source : adapté de MS Roberts 2013

Modèle de durée

MODÈLE DE DURÉE: LES FONCTIONS DE BASE

La fonction de répartition F(t) est la probabilité que l'événement se produise avant le temps t:

$$\mathbf{F}(t) = P(T \le t)$$

La fonction de survie S(t) est la probabilité que l'événement ne se produise pas avant le temps t. Elle est définie par l'équation suivante :

$$S(t) = P(T \ge t) = 1 - F(t)$$

La fonction de densité f(t) représente la probabilité que l'événement se produise après le temps t dans l'intervalle $[t; t + \varepsilon]$:

$$f(t) = \lim_{\varepsilon \to 0} \frac{P(t \le T < t + \varepsilon)}{\varepsilon}$$
 ou $f(t) = \frac{dF(t)}{dt} = \frac{d(1 - S(t))}{dt} = -S'(t)$

La **fonction de risque** ou de risque instantané h(t) est le risque que l'événement se produise au cours d'un intervalle de temps $[t; t + \varepsilon]$ sachant que jusqu'à t cet événement n'a pas eu lieu :

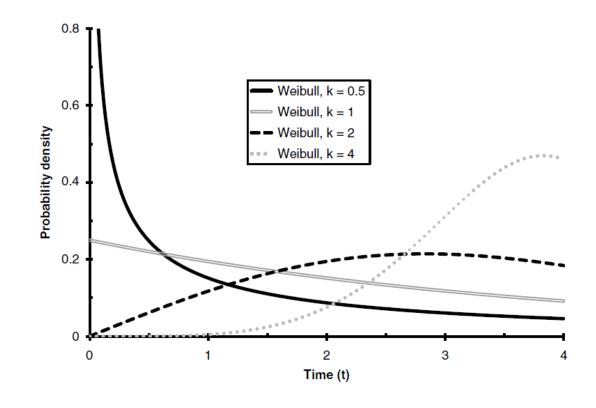
$$h(t) = \lim_{\varepsilon \to 0} \frac{P(t \le T < t + \varepsilon | t \le T)}{\varepsilon} = \frac{f(t)}{S(t)}$$

La fonction de risque cumulé H(t) est l'intégrale de la fonction de risque instantané jusqu'à l'instant à t.

$$H(t) = \int_0^t \frac{f(u)}{S(u)} du \implies S(t) = exp(-H(t))$$

REES

The Weibull Distribution


- $\lambda > 0$ a scale parameter
- k > 0 a shape parameter

$$S(t) = e^{-(\lambda t)^k}$$

$$h(t) = \lambda k (\lambda t)^{k-1}$$

The bigger is λ , the quicker the survival function falls. k defines how the hazard changes over time.

- When k = 1 the risk is constant (equivalent to the exponential function).
- When k > 1 the risk increases over time.
- When k < 1 it decreases over time.

The Gompertz Distribution

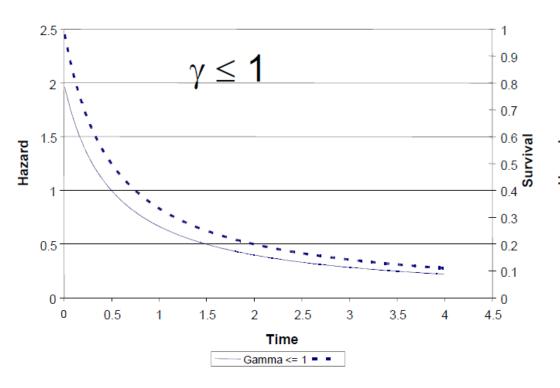
 $\lambda > 0$ a scale parameter, $\gamma > 0$ a shape parameter

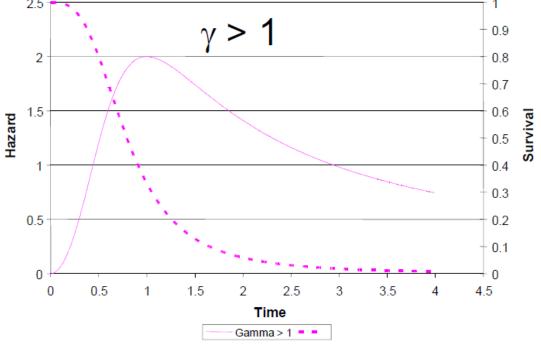
$$S(t) = exp\{\frac{\lambda}{\gamma}(1 - e^{\gamma t})\}$$

$$h(t) = \lambda e^{\gamma t}$$

$$H(t) = -\frac{\lambda}{\gamma}(1 - e^{\gamma t})$$

$$tp(t, u) = 1 - exp\{\frac{\lambda}{\gamma}(e^{\gamma(t-u)} - e^{\gamma t})\}$$


 $tp(t,u)=1-exp\left\{\frac{\eta\lambda}{\gamma}(e^{\gamma(t-u)}-e^{\gamma t})\right\}$ for the intervention arm, where η is the hazard ratio



Distribution Log-Logistique

$$S(t)=\frac{1}{1+2}$$

$$h(t) = \frac{\lambda \gamma t^{\gamma -}}{(1 + \lambda t)^{\gamma -}}$$

Distribution log-normale

- Très similaire à la distribution log-logistique avec $\gamma > 1$
- Spécification :

$$Log(T) \sim Normal(\mu, \sigma)$$

Distribution de survie :

$$S(t) = 1 - \Phi\left[\frac{log(t) - \mu}{\sigma}\right]$$

Où

est la distribution normale cumulative standard

Choice of Distribution for Time-to-Event Data

Visual inspection

Statistical tests:

- Akaike's information criterion test
- Bayesian information criterion test
- Sum of squared deviations
- −2 log-likelihood statistic
- Log-cumulative hazard plot
- Other tests of the hazard function
- Martingale residuals

Clinical validity and external data

Systematic assessment

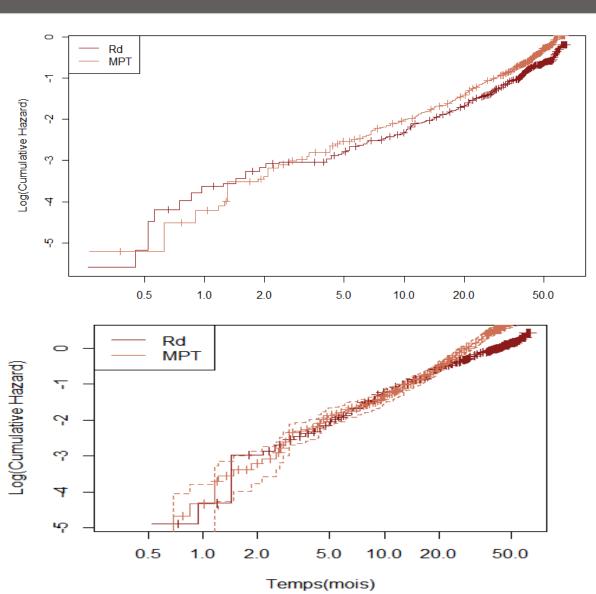
Ajusement paramétrique

- Modèles de survie choisis devraient être justifiées avec les :
 - mesures statistiques (validité interne)
 - plausibilité clinique (validité externe)
- Modèles paramétriques standard:
 - Exponentiel
 - Weibull
 - Gompertz
 - Log-normal
 - Log-logistique
- Modèles plus flexibles peuvent être nécessaires (poly-Weibull model, spline-based modèle paramétrique, generalized gamma, generalized F model, etc.)

Formes fonctionnelles appropriées

Comparaison Graphique

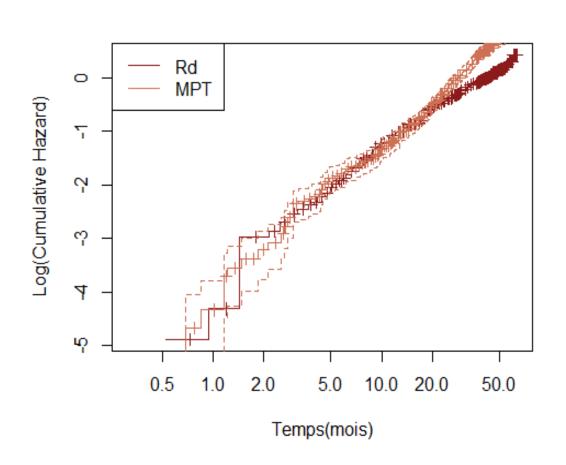
Inspection visuelle


Tests Statistiques

- Critère d'information d'Akaike (AIC)
- Critère d'information bayésien (BIC)
- Log-vraisemblance (log(L))
- Log-cumulative hazard plot
- Résidus marginales

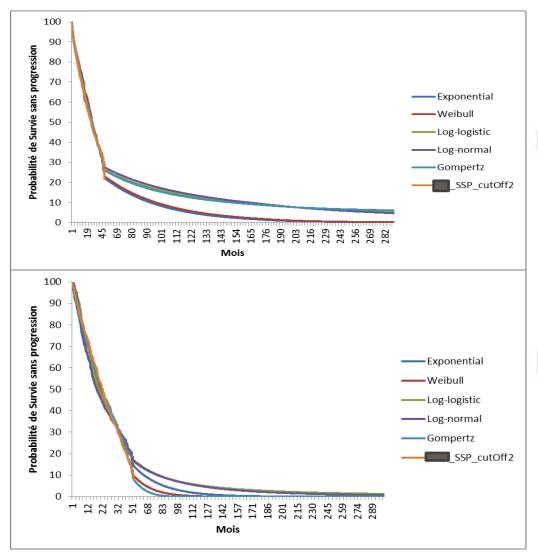
Validité Clinique

Evaluation de la pertinence clinique de la partie extrapolée de la courbe de survie


Modèle à risque proportionnel vs modèle à risque accéléré

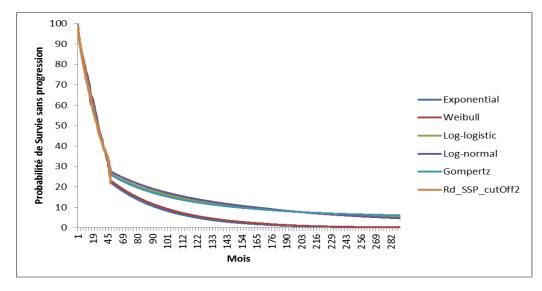
- Courbes représentant les Log des fonctions de risque cumulé des courbes KM sont parallèles :
 - Proportionnalité des risques pour les deux traitements
 - Choix d'une seule forme fonctionnelle et estimation dérivée de la courbe pour deuxième traitement
- Courbes ne sont pas parallèles :
 - Rejet de l'hypothèse de risque proportionnel; les risques entre les traitements ne sont pas proportionnels
 - Ajustement des courbes de survie doit se faire séparément pour les deux traitements

ASYMETRIE DE LA COURBE DE SURVIE SANS PROGRESSION


Rejet de l'**Hypothèse de risque proportionnel** (PH) pour Rd et MPT

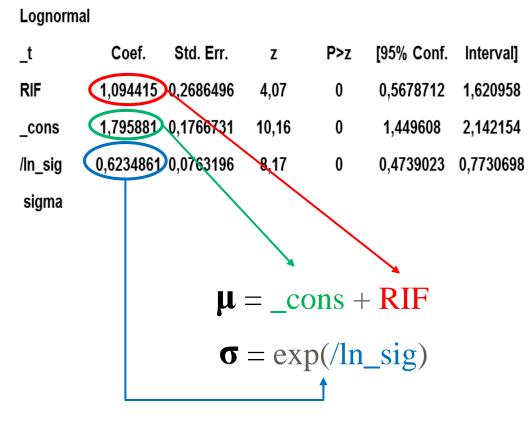
•du fait que les courbes représentant le log-cumulative hazards des fonctions de risque cumulé des deux traitements ne sont pas parallèles

=> les risques entre les traitements ne sont pas proportionnels les uns aux autres dans le temps


AJUSTEMENTS PARAMÉTRIQUES SUR 2 COURBES SSP

Loi de distribution	AIC	BIC	Log-vraisemblance
Exponentiel	1406.993	1411.275	-702.496
Weibull	1408.284	1416.849	-702.142
Log-normale	1394.876	1403.44	-695.437
Log-Logistique	1397.702	1406.267	-696.851
Gompertz	1396.269	1409.116	-695.134
Gamma	1403.436	1412.001	-699.718
Loi de distribution	AIC	BIC	Log-vraisemblance
Loi de distribution Exponentiel	AIC 1286.433	BIC 1290.738	Log-vraisemblance -642.216
-			
Exponentiel	1286.433	1290.738	-642.216
Exponentiel Weibull	1286.433 1260.929	1290.738 1269.538	-642.216 -628.464
Exponentiel Weibull Log-normale	1286.433 1260.929 1311.013	1290.738 1269.538 1319.622	-642.216 -628.464 -653.506
Exponentiel Weibull Log-normale Log-Logistique	1286.433 1260.929 1311.013 1295.47	1290.738 1269.538 1319.622 1304.079	-642.216 -628.464 -653.506 -645.735

Ajustement paramétrique sur deux courbes SSP



Loi de distribution	AIC	BIC	Log-vraisemblance
Exponentiel	1406.993	1411.275	-702.496
Weibull	1408.284	1416.849	-702.142
Log-normale	1394.876	1403.44	-695.437
Log-Logistique	1397.702	1406.267	-696.851
Gompertz	1396.269	1409.116	-695.134
Gamma	1403.436	1412.001	-699.718

FONCTION LOGNORMAL : Identification des paramètres de la loi LogNormal à partir du résultat de l'ajustement sous STATA

Résultat STATA

Fonction Log-Normale

Fonction de densité:

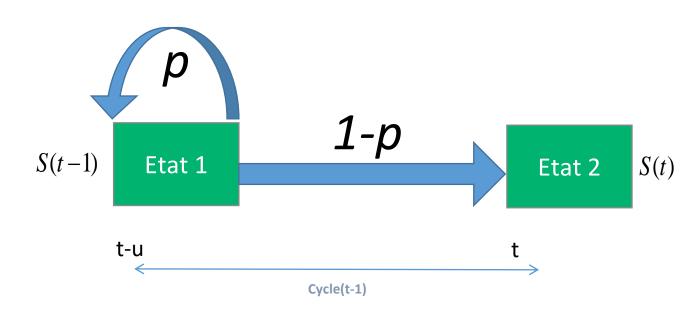
$$f(t) = \frac{1}{t\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left[\frac{(\log t) - \mu}{\sigma}\right]^2\right)$$

Fonction de risque instantané:

$$h(t) = \frac{f(t)}{S(t)}$$
 pour $0 < t < \infty$

Fonction de survie:

$$S(t) = 1 - \phi \left(\frac{log(t) - \mu}{\sigma} \right)$$


 Φ : la fonction cumulée de la loi normale standard;

μ: paramètre d'emplacement;

o: paramètre d'échelle de la distribution gaussienne associée

PROBABILITÉS DE TRANSITION

Au début du cycle t le patient peut:

- Soit se maintenir dans l'état de santé qui était le sien en *t-1*(Etat 1) avec une probabilité *p* sachant qu'il était vivant en S(t-u)
- Soit voir son état de santé se dégrader ou s'améliorer selon une probabilité (1-p) en passant de l'Etat 1 à l'Etat 2

$$t_p(t_u) = 1 - p = 1 - S(t)/S(t - u)$$

$$t_p(t_u) = 1 - \frac{\exp\{-H(t)\}}{\exp\{-H(t - u)\}} = 1 - \exp\{H(t - u) - H(t)\}$$

CALCUL DES PROBABILITÉS DE TRANSITION

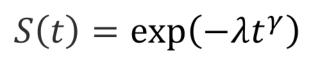
Survie Globale (Weibull)

$$S_{Weibull} = \exp(-\lambda t^{\gamma}) = \exp(-0.067 * t^{0.816})$$

$$p = \exp\{\lambda (t - u)^{\gamma} - \lambda t^{\gamma}\} =$$

$$t = 2, \qquad u = 1$$

$$= \exp\{0.067 * 1^{0.816} - 0.067 * 2^{0.816}\} = 0.9503$$


la probabilité pour un patient traité avec *Innovation* soit toujours vivant au début du deuxième cycle sachant qu'il était vivant au début du premier cycle = 95,03%

Probabilité de décéder =
$$1 - p = 1 - 0.9503 = 0.0497 \Rightarrow 4.97\%$$

PROBABILITÉS DE TRANSITION:

Trace de la Loi Weibull

$$t_p(t_u) = 1 - S(t)/S(t-u)$$

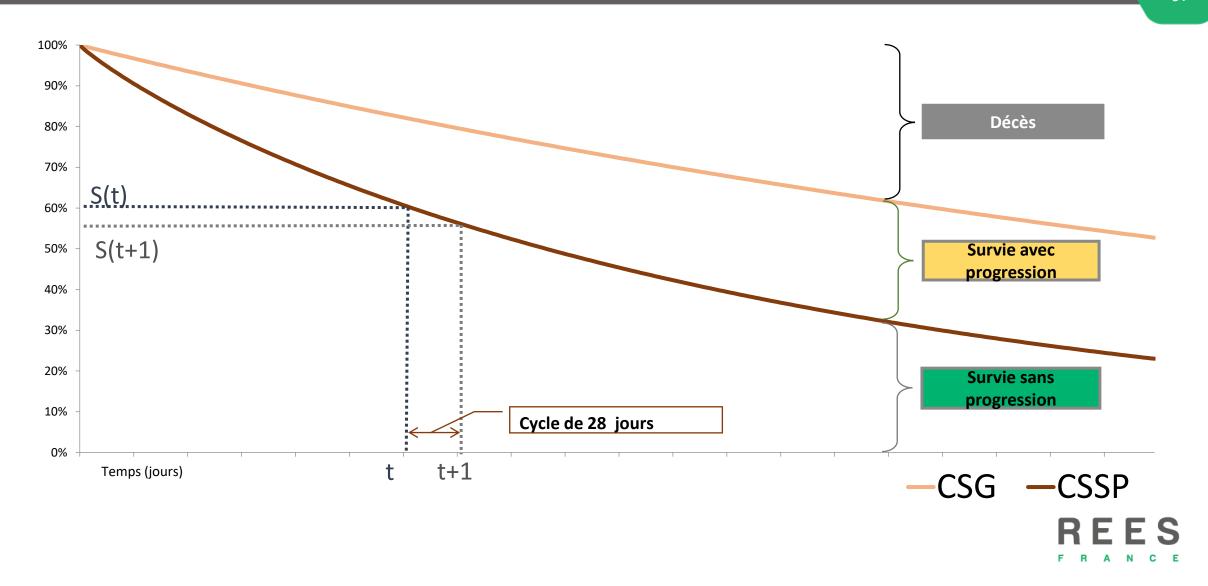
Cycle de Markov de durée u=1 (le pas de la simulati

Weibull	Weibull	Probabilité de transition
S(t)	S(t-u)	vers le décès
100%		
93,52%	100%	1- 93,52%/100%=5%
88,88%	94%	5%
84,86%	89%	5%
81,25%	85%	4%
77,95%	81%	4%
74,90%	78%	4%
72,06%	75%	4%
	:	
3,58%	4%	2%
3,50%	4%	2%
	:	
	S(t) 100% 93,52% 88,88% 84,86% 81,25% 77,95% 74,90% 72,06% 3,58%	S(t) S(t-u) 100% 100% 93,52% 100% 88,88% 94% 84,86% 89% 81,25% 85% 77,95% 81% 74,90% 78% 72,06% 75% 3,58% 4%

PRINCIPALES PROPRIÉTÉS DES FONCTIONS DE SURVIE PARAMÉTRIQUES

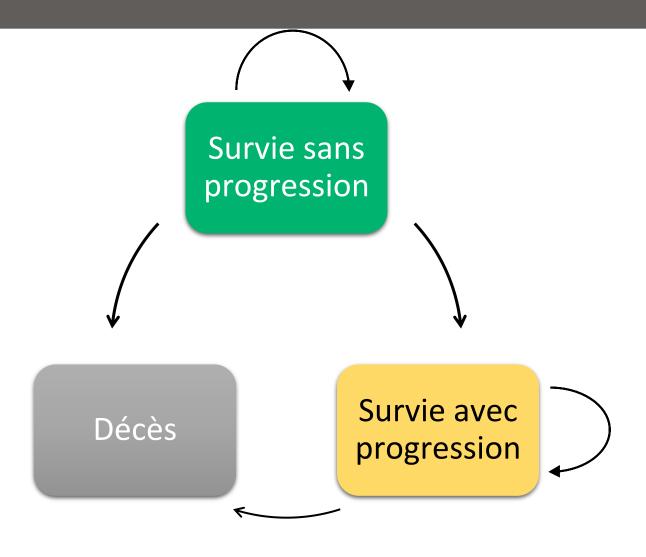
	Exponential	Weibull	Gompertz	Log-Logistic	Log-Normal
Risk pattern	Constant hazard	Monotonically increasing $(\gamma > 1)$ or decreasing $(0 < \gamma < 1)$ hazard	Monotonically increasing $(\gamma > 1)$ or decreasing $(\gamma < 0)$ hazard	Monotonically decreasing when $\gamma \le 1$, or increasing followed by a gradually decreasing hazard when $\gamma > 1$	Log of the event time has a normal distribution
Type: PH vs. AFT	PH or AFT	PH or AFT	РН	PO or AFT	AFT
Survival function: $S(t) =$	$\exp(-\lambda t)$	$\exp(-\lambda t^{\gamma})$	$\exp\left[\frac{-\exp(\lambda)(\exp(\gamma t)-1)}{\gamma}\right]$	$\frac{1}{1+\lambda t^{\gamma}}$	$1 - \phi\left(\frac{\log(t) - \lambda}{\gamma^{-1}}\right)$ where ϕ is the cumulative standard normal distribution
Hazard function: $h(t) =$	λ	$\lambda \gamma t^{\gamma-1}$	$\exp(\exp(\lambda) + \gamma t)$	$\frac{\lambda \gamma t^{\gamma-1}}{1 + \lambda t^{\gamma}}$	Hazard increases to a maximum and then decreases to 0 as time tends to infinity, and
Linear function	$\log(S(t)) = -\lambda t$	$\log(-\log(S(t))) = \log(\lambda) + \gamma\log(t)$	$\log(h(t)) = \exp(\lambda) + \gamma t$	$-\log\left(\frac{\hat{S}(t)}{1-\hat{S}(t)}\right) = \log(\lambda) + \gamma\log(t)$	$h(0) = 0$ $\log(t) = \lambda + \frac{\phi^{-1}(1 - \hat{S}(t))}{\gamma}$
Graphical test	$\log(\hat{S}(t))$ vs. t	$\log(-\log(\hat{S}(t)))$ vs. $\log(t)$	$\log(\hat{h}(t))$ vs. t	$\log\left(\frac{\hat{S}(t)}{1-\hat{S}(t)}\right)$ vs. $\log(t)$	$\phi^{-1}(1-\hat{S}(t)) \text{ vs. } \log(t)$
Regression function	PH: $\log(\lambda_i) = -X_i\beta$ AFT: $\log(\lambda_i) = X_i\beta$	PH: $\frac{-\log(\lambda_i)}{\gamma} = -X_i\beta$ AFT: $-\log(\lambda_i) = X_i\beta$	$rac{-\log(\lambda_i)}{\gamma} = -X_i eta$	PO: $\frac{-\log(\lambda_i)}{\gamma} = -X_i\beta$ AFT: $-\log(\lambda_i) = X_i\beta$	$\lambda = X_i eta$

AFT accelerated failure time, PH proportional hazards, PO proportional odds, Log natural logarithmic function, Exp natural exponential function. Further details on these distributions and their properties can be found in Collett

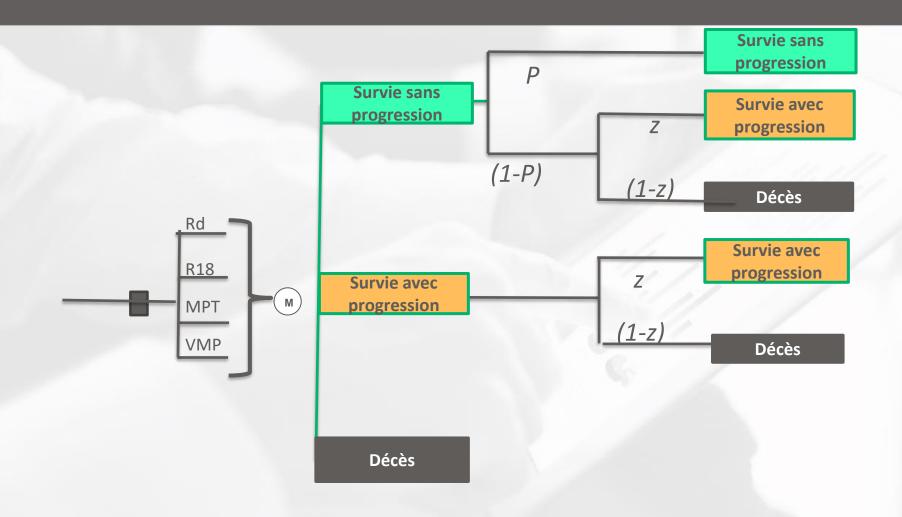


Modèle de survie partitionnée

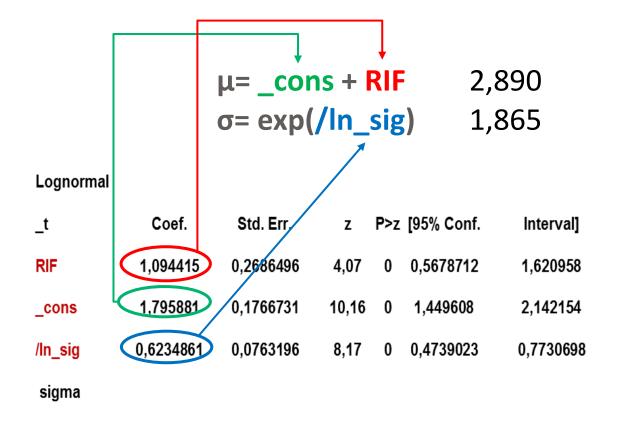
Modèle de survie partitionnée



SES ANTÉCÉDENTS : LE Q-TWIST

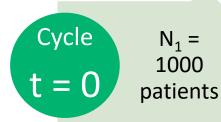


MODÈLE À TROIS ETATS


Principe de Fonctionnement

FONCTION LOGNORMAL:

Tracé de la Loi en Fonction de paramètres μ et σ



Mois (t)	S(t) Log-Normale	
0	100%	
1	93,94%	
2	88,06%	
3	83,16%	
4	79,00%	
5	75,38%	
6	72,20%	
•	•	
•	•	
60	25,93%	
•	•	
•	•	
120	15,46%	

$$S(t) = 1 - \phi \left(\frac{log(t) - \mu}{\sigma} \right)$$

ESTIMATION DU NOMBRE DES PATIENTS SANS PROGRESSION

$$t = 1$$
 $N_2 = N_1^*$... $P(T_p \ge 2 | T_p \ge 1)$...

i = t
$$N_{t+1} = N_t^*$$

 $P(T_p \ge t + 1 | T_p \ge t)$

 $P(T_p \ge t + 1 | T_p \ge t)$ = probabilité pour un patient de survivre Sans Progression (SP) au début du cycle t+1sachant que le sujet était vivant et qu'il ne progressait pas au début du cycle précédent t

$$P(T_p \ge t + 1 \mid T_p \ge t) = \frac{P((T_p \ge t + 1) \cap (T_p \ge t))}{P(T_p \ge t)} = \frac{P(T_p \ge t + 1)}{P(T_p \ge t)} = \frac{S_{SSP}(t + 1)}{S_{SSP}(t)}$$

Où:

 T_p - le temps jusqu'à progression

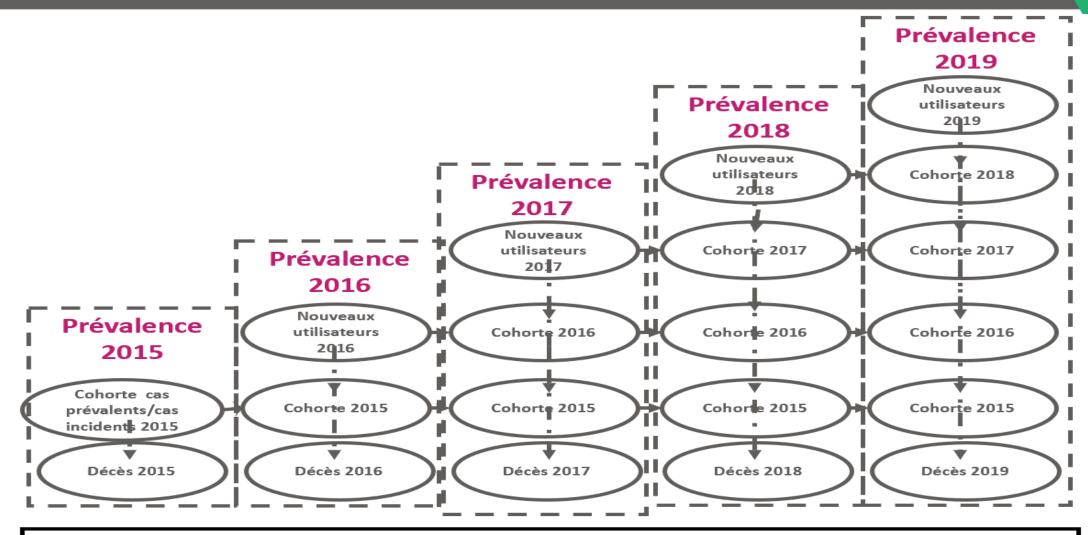
 $S_{SSP}(t)$ - la probabilité de survivre sans progression au delà du cycle t

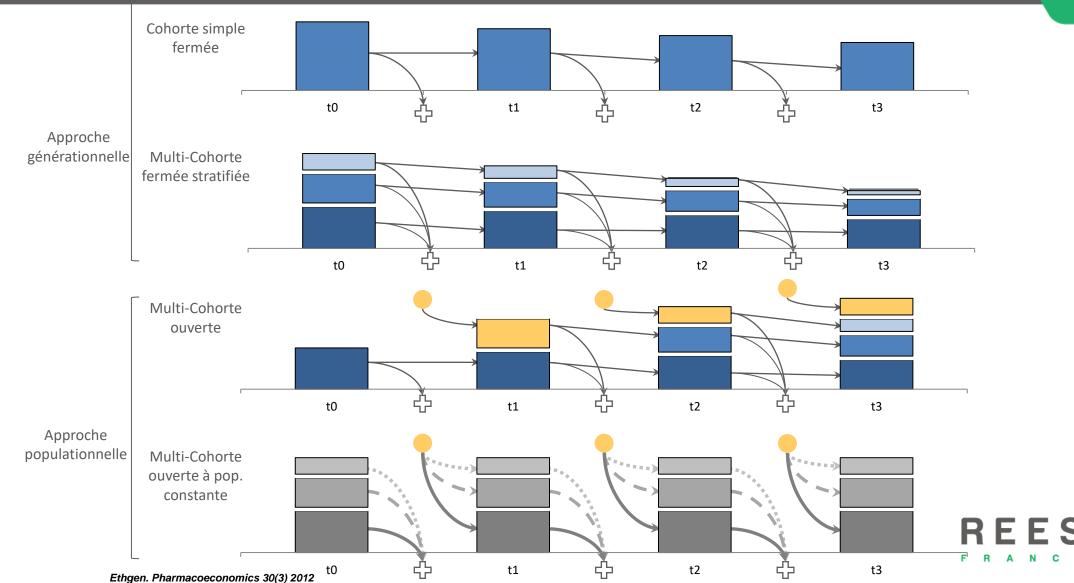
TRACE DE L'EXTRAPOLATION SSP « VIE ENTIÈRE »

Semaine	Cycle		Bras de Tr	aitement
7 jours	28 jours	Année	Innovation	Treatment A
0	0	0,00	100%	100%
4	1	0,08	97,63%	96,56%
8	2	0,15	97,75%	95,68%
12	3	0,23	97,80%	95,78%
16	4	0,31	97,83%	96,38%
20	5	0,38	97,85%	97,37%
24	6	0,46	97,86%	98,66%

Distribution	λ (Échelle)	γ (Forme)
SSP – Innovation (Weibull)	0.024	0.961
SSP – Treatment A (Weibull)	0.035	1.261

Fonction de survie de Weibull : $S(t) = \exp(-\lambda t^{\gamma})$

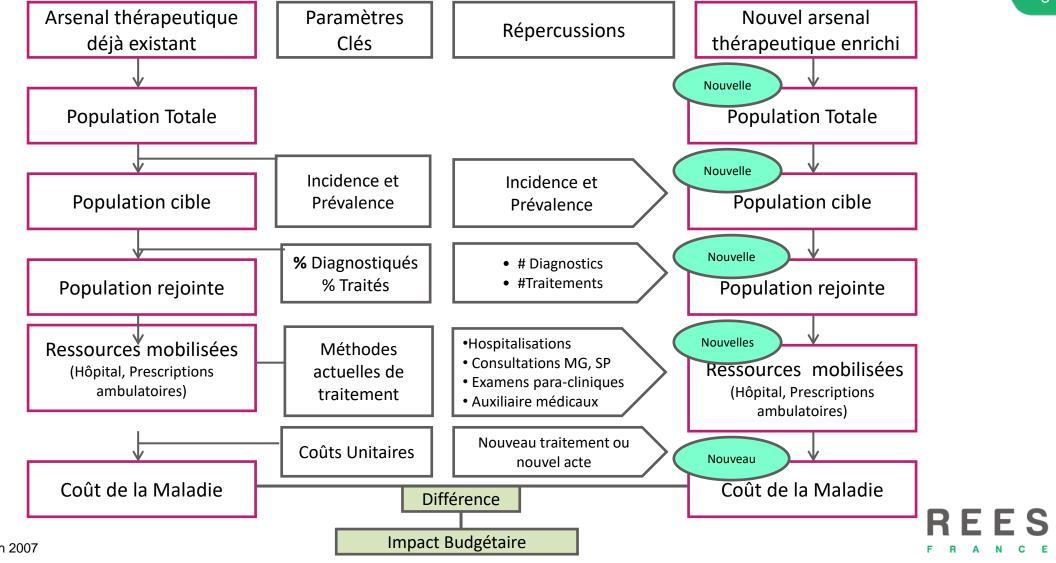

$$P(T_p \ge t + 1 \mid T_p \ge t) = \frac{S(t+1)}{S(t)}$$



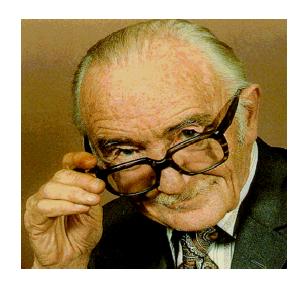
A la base un raisonnement multi-cohorte

Source : R Launois et al.« L'évaluation des technologies médicales : les protocoles de deuxième génération » JEM 2006

Cohorte Générationnelle ou Populationnelle



La spécificité des BIM


	AIB	Analyse coût efficacité	
Perspectives	Acheteurs	Collectivité/Société	
Rationnel	Conséquences financières	Rendement sanitaire	
ÉPIDÉMIOLOGIE	PRÉVALENCE	INCIDENCE	
Modélisation	Multicohorte fermée/ouverte	Cohorte simple	
Fenêtre Temporelle	Court Terme	Vie Entière	
DYNAMIQUE POPULATIONNELLE	ENTREES/ SORTIES	VARIABLE OMISE	
DYNAMIQUE DU MARCHÉ	Tx PENETRATION	VARIABLE OMISE	
DYNAMIQUE ÉVOLUTIVE MALADIE	BDMA	RCT, BDMA	
Etats de santé	VARIABLE OMISE	QALYs	
Coût	Impact annuel et cumulé	Coût Direct	
Actualisation	NON	4% REES	

10

Anticiper les Conséquences Financières de La Fixation du Prix

CONCLUSION

Exiger des moyens sur la base de données épidémiologiques ou de faits scientifiquement démontrés est indispensable mais ne suffit plus. Les conséquences médico-économiques de la décision sont désormais à prendre impérativement en compte

SÉLECTION BIBLIOGRAPHIQUE: MODÈLES (1/2)

- Barton P, Bryan S, Robinson S. Modelling in the economic evaluation of health care: selecting the appropriate approach. J Health Serv Res Policy. Apr 2004;9(2):110-118..
- Brennan A, Chick SE, Davies R. A taxonomy of model structures for economic evaluation of health technologies. Health Econ. Dec 2006;15(12):1295-1310.
- Briggs AH, Weinstein MC, Fenwick EA, Karnon J, Sculpher MJ, Paltiel AD. Model parameter estimation and uncertainty: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--6. Value Health. Sep-Oct 2012;15(6):835-842.
- Briggs A, Sculpher M, Claxton K, Decision modelling for health economic evaluation. Handbook in health economic evaluation series. Oxford University press, 2006, 237
- Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling good research practices--overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--1. Value Health. Sep-Oct 2012;15(6):796-803
- Beck RJ., Pauker SG., Gottlieb JE., Klein K., Kassirer JP. A convenient Approximation of Life Expectancy (The DEALE). The American Journal of Medicine. 1982; 73; 889-897.
- Cooper K, Brailsford S, Davies R. Choice of modelling technique for evaluating health care interventions. Journal of the operational research society. 2007;58:168-176.
- Dams J, Bornschein B, Reese JP, et al. Modelling the cost effectiveness of treatments for Parkinson's disease: a methodological review. Pharmacoeconomics. Dec 2011;29(12):1025-1049.
- Dasbach EJ, Elbasha EH, Insinga RP. Mathematical models for predicting the epidemiologic and economic impact of vaccination against human papillomavirus infection and disease. Epidemiol Rev. 2006;28:88-100.
- Davies R, Roderick P, Raftery J. The evaluation of disease prevention and treatment using simulation models. European journal of Operational Research. 2003;150:53-66.
- Davis S, Stevenson M, Tappenden P, Wailoo A. NICE DSU technical Support Document 15: Cost-effectiveness modelling using patient-level simuilation. Sheffield: ScHARR;2014.
- Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB. Model transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--7.
 Value Health. Sep-Oct 2012;15(6):843-850.
- Edmunds WJ, Medley GF, Nokes DJ. Evaluating the cost-effectiveness of vaccination programmes: a dynamic perspective. Stat Med. Dec 15 1999;18(23):3263-3282.
- Garnett GP, Cousens S, Hallett TB, Steketee R, Walker N. Mathematical models in the evaluation of health programmes. Lancet. Aug 6 2011;378(9790):515-525.
- Goldie SJ, Goldhaber-Fiebert JD, Garnett GP. Chapter 18: Public health policy for cervical cancer prevention: the role of decision science, economic evaluation, and mathematical modeling.
 Vaccine. Aug 31 2006;24 Suppl 3:S3/155-163.
- Groot Koerkamp B, Stijnen T, Weinstein MC, Hunink MG. The combined analysis of uncertainty and patient heterogeneity in medical decision models. Med Decis Making. Jul-Aug 2011;31(4):650-661.
- Halpern EF, Weinstein MC, Hunink MG, Gazelle GS. Representing both first- and second-order uncertainties by Monte Carlo simulation for groups of patients. Med Decis Making. Jul-Sep 2000;20(3):314-322.
- Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Moller J. Modeling using discrete event simulation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--4. Value Health. Sep-Oct 2012;15(6):821-827.
- Kim SY, Goldie SJ. Cost-effectiveness analyses of vaccination programmes: a focused review of modelling approaches. Pharmacoeconomics. 2008;26(3):191-215.

SÉLECTION BIBLIOGRAPHIQUE: MODÈLES (2/2)

- Klein E. Comprendre, Concevoir et agir : les trois finalités de la simulation. CLEFS CEA. 2002(47):1-18.
- Kreke JE, Schaefer AJ, Roberts MS. Simulation and critical care modeling. Curr Opin Crit Care. Oct 2004;10(5):395-398.
- Kuntz K, Sainfort F, Butler M, et al. Decision and Simulation Modeling in Systematic Reviews. Rockville (MD): Agency for Healthcare Research and Quality;
- Feb 2013.
- Launois R., Croutsche JJ., Mégnigbêto AC., Le Lay K. L'apport indispensable de l'épidémiologie clinique aux modèles de Markov. Journal d'Economie Médicale, 1999, 17(5): 343-361
- Miller ler DK., Homan SM. Determining transition probabilities: confusion and suggestions. Medical Decision Making 1994; 14: 52-58
- Munz P, Hudea I, Imad J, Smith R. When zombies attack!: Mathematical modelling of an outbreak of zombie infection. In: Tchuenche J, Chiyaka C, eds. Infectious Disease Modelling research Progress: Nova Science Publishers; 2009:133-150.
- Petrou S, Gray A. Economic evaluation using decision analytical modelling: design, conduct, analysis, and reporting. BMJ. 2011;342:d1766.
- Philips Z, Ginnelly L, Sculpher M, et al. Review of guidelines for good practice in decision-analytic modelling in health technology assessment. Health Technol Assess. Sep 2004;8(36):iii-iv, ix-xi, 1-158.
- Pitman R, Fisman D, Zaric GS, et al. Dynamic transmission modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--5. Value Health. Sep-Oct 2012;15(6):828-834.
- Noberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--2. Value Health. Sep-Oct 2012;15(6):804-811.
- Sargent R. Verification and validation of simulation models. Journal of simulation. 1996;7(1):12-24.

and Outcomes Research (ISPOR) (Ed.), 7th European Congress, Hamburg.

- Sharif B, Kopec JA, Wong H, et al. Uncertainty analysis in population-based disease microsimulation models. Epidemiology research international. 2012;2012:1-14.
- Siebert U, Alagoz O, Bayoumi AM, et al. State-transition modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--3. Value Health. Sep-Oct 2012;15(6):812-820.
- Soares MO, Canto e Castro L. Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness. York: Centre for Health Economics; 2010.
- Sonneberg FA., Beck JR. Markov Models in Medical Decision Making: A practical guide. Medical Decision Making 1993; 13; 322-338.
- Weinstein MC, O'Brien B, Hornberger J, et al. Principles of good practice for decision analytic modeling in health-care evaluation: report of the ISPOR Task Force on Good Research Practices--Modeling Studies. Value Health. Jan-Feb 2003;6(1):9-17.
- Weinstein MC, Toy EL, Sandberg EA, et al. Modeling for health care and other policy decisions: uses, roles, and validity. Value Health. Sep-Oct 2001;4(5):348-361.
- Briggs A. (2004) Parametric survival models and decision models: relating continuous hazards to discrete-time transition probabilities., in: International Society for Pharmachem 1988.

