Journées de la Société Algérienne de Pharmacie Hospitalière et Oncologie (SAPHO) Alger, 3 novembre 2023

L'accès aux immunothérapies et évaluation médico-économique

Pr Robert Launois

28, rue d'Assas 75006 Paris – France

Tel . 01 44 39 16 90 - Fax 01 44 39 16 92

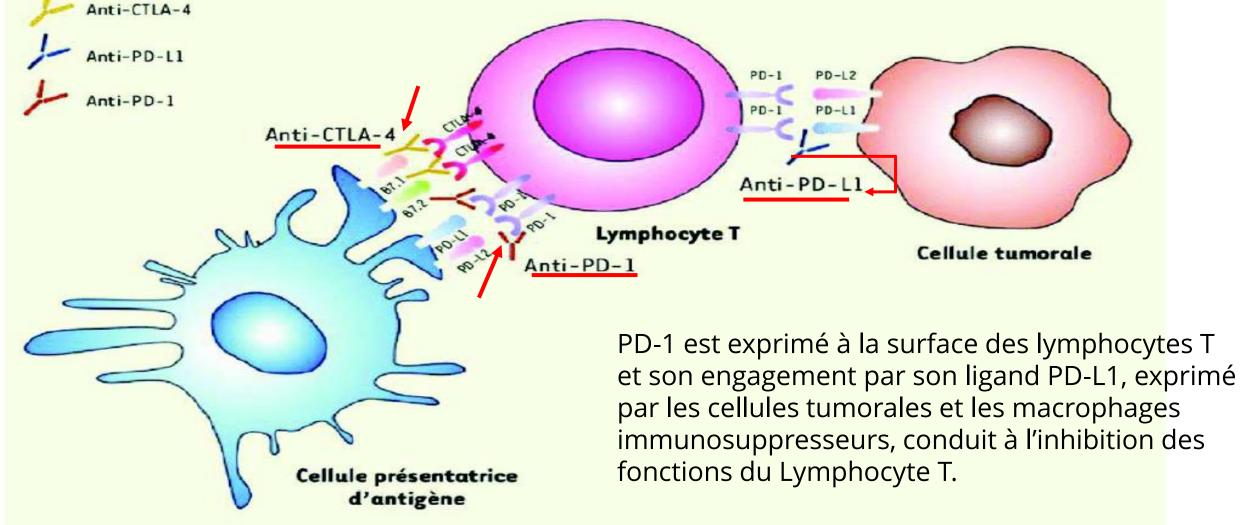
E-mail: reesfrance@wanadoo.fr - Web: www.rees-france.com

PRINCIPE DE L'IMMUNOTHÉRAPIE : Déverrouiller le système immunitaire contre les tumeurs

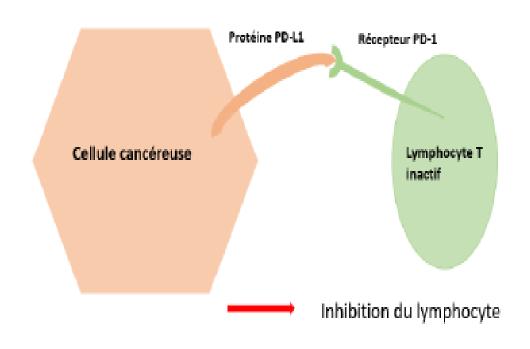
- Les chimiothérapies traditionnelles ou les thérapies ciblées visent directement la croissance des cellules cancéreuses. L'immunothérapie agit indirectement en stimulant les dépenses naturelles de l'organisme contre des corps qui lui sont étrangers
- Les cellules dites « points de contrôle » (anti CTLA-4, anti PD-1, anti PD-L1) situées à la surface des cellules cancéreuses signalent aux cellules immunitaires et plus particulièrement les lymphocytes T que les cellules cancéreuses qui les portent ne doivent pas être attaquées; La tumeur désactive le système immunitaire. On dit qu'elle le « freine »
- Le blocage de ces freins par des traitements, appelés « inhibiteurs de points de contrôle immunitaire » (IPC). rétablit les capacités fonctionnelles des lymphocytes T sur 20 à 50% des patients

LA PLUS IMPORTANTE INNOVATION THÉRAPEUTIQUE DE CES VINGT-CINQ DERNIÈRES ANNÉES

- Spécificité, amplitude et durabilité des résultats obtenus sont les trois caractéristiques de ces nouveaux traitements;
- Les taux de réponse objectifs (ORR) des traitements ayant obtenu l'AMM oscillent entre 20 % et 50 % selon le type de cancer;
- Les résultats sont obtenus aussi bien en première ligne de traitement que chez des patients métastatiques ou bénéficiant d'un traitement adjuvant;
- Les bénéfices obtenus à long terme se traduisent par un allongement de la durée des intervalles libres sans traitement et des courbes de survie qui atteignent un plateau;
- Le développement des immunothérapies permet d'envisager un élargissement des indications et d'espérer des survies prolongées chez la majorité des patients notamment dans le mélanome et le cancer du poumon (CPNPC).



PATHOLOGIES CONCERNÉES


- Mélanomes stade 4 L1;
- Cancer bronchique non à petites cellules (CBNPC) L1,L2 après chimiothérapie;
- Lymphomes de hodgkin;
- Cancer de la vessie;
- Cancer du rein;
- Cancer ORL.

LES MÉCANISMES DE L'IMMUNOTHÉRAPIE

LES MÉCANISMES DE L'IMMUNOTHÉRAPIE

Cellule cancéreuse

Anticorps
Anti PD-L1
Anti PD-L1
Anti PD-1
Lymphocyte T
actif

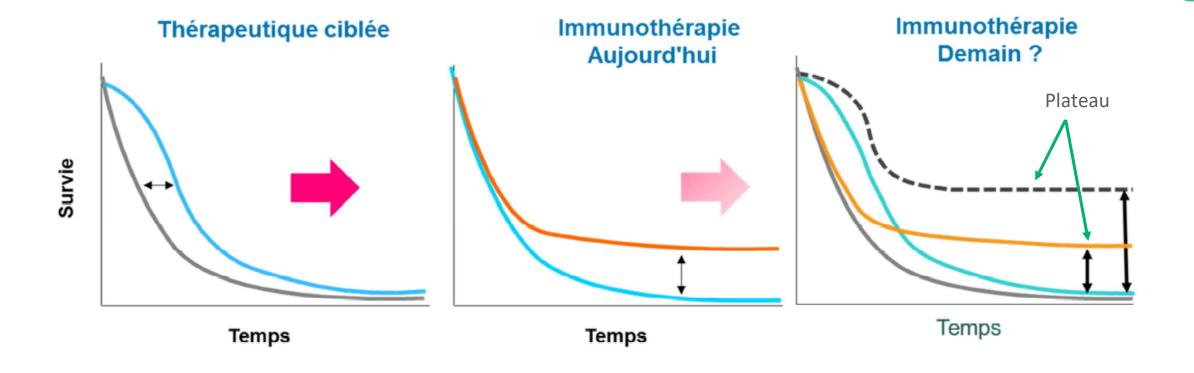
Levée de l'inhibition du lymphocyte

Figure 8 : Voie de signalisation PD1/PDL1, "checkpoints immunitaires"

Figure 9 : Mécanisme d'action des anticorps anti-PDL-1 et anti PD-1

Lorsque la protéine PD-L1 à la surface de la cellule tumorale est reconnue par la molécule PD-1 qui se trouve sur le lymphocyte T, elle lui signale que la cellule qui la porte ne doit pas être attaquée. Les cellules cancéreuses deviennent invisibles. Le txt par les anticorps momoclonaux PD-L1 et PL-1

Permettent au système immunitaire d'attaquer les cellules cancéreuses protégées.


LES INHIBITEURS DES POINTS DE CONTRÔLE IMMUNITAIRES « ICI » HOMOLOGUES

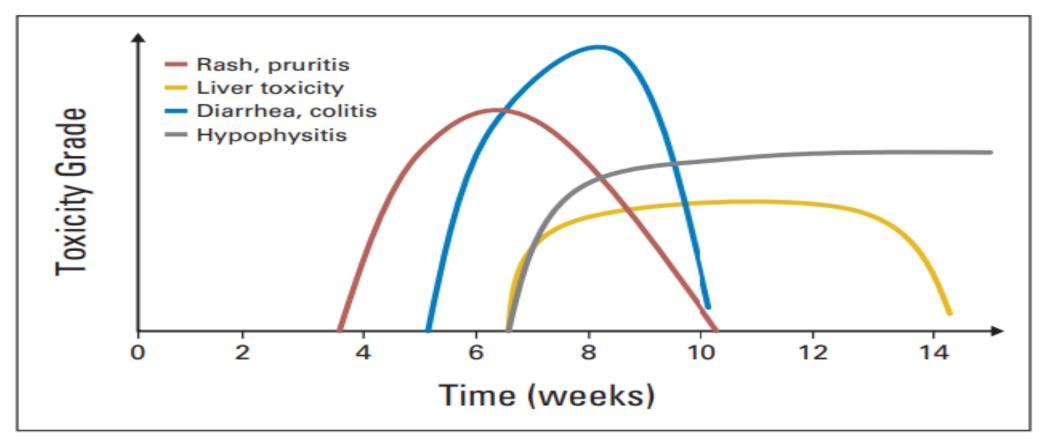
LES anti-CTLA-4 :

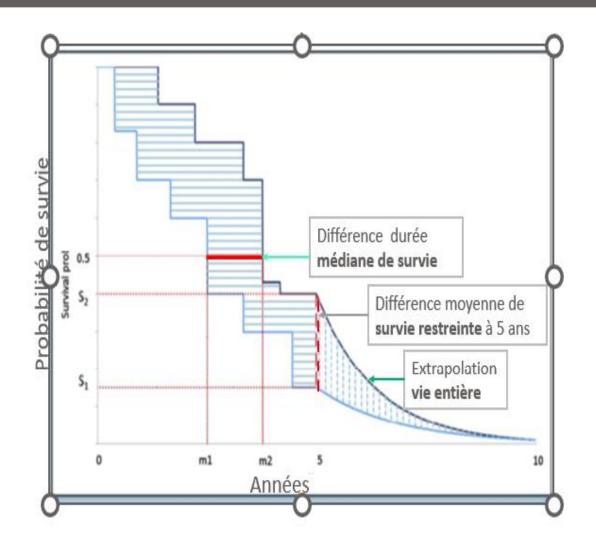
- IPILINUMAB, YERVOY®; BMS,
- TREMELIMUMAB, INJUDO®; ASTRA ZENECA
- LES anti-PD-1:
 - NIVOLUMAB, OBDIVO®; BMS;
 - PEMBROLIZUMAB, KEYTRUDA®; MSD;
 - DOSTARLIMAB, JEMBERLI®); GSK
 - CEMIPLIMAB:LIBTAYO®; SANOFI
- LES anti-PDL-1:
 - ATEZOLIZUMAB, TECENTRIQUE®; ROCHE;
 - (DURVALUMAB) .IMFINZI®; ASTRA ZENECA
 - (AVELUMAB BAVENCIO®; MERK SERONO

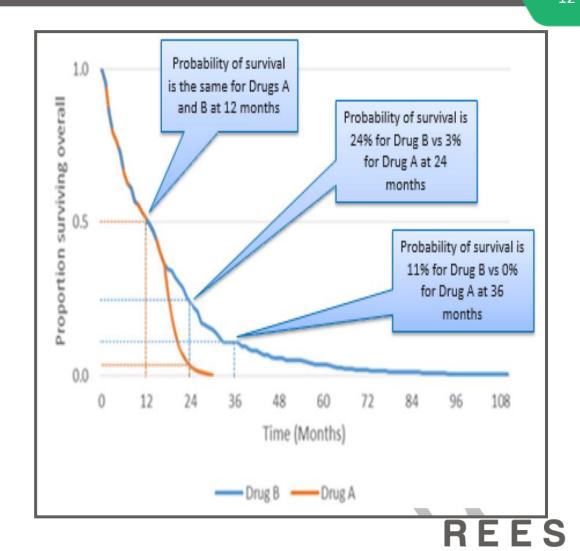
EX D'AMELIORATION DES TAUX DE SURVIE DANS LE MELAMONE SOUS YERVOY®

- Contrôle
- Thérapies ciblées
- Blocage rétro-contrôle immunitaire
- -- Associations/séquences

MAIS DES EFFETS SECONDAIRES IMPORTANTS AU DÉBUT DU TRAITEMENT



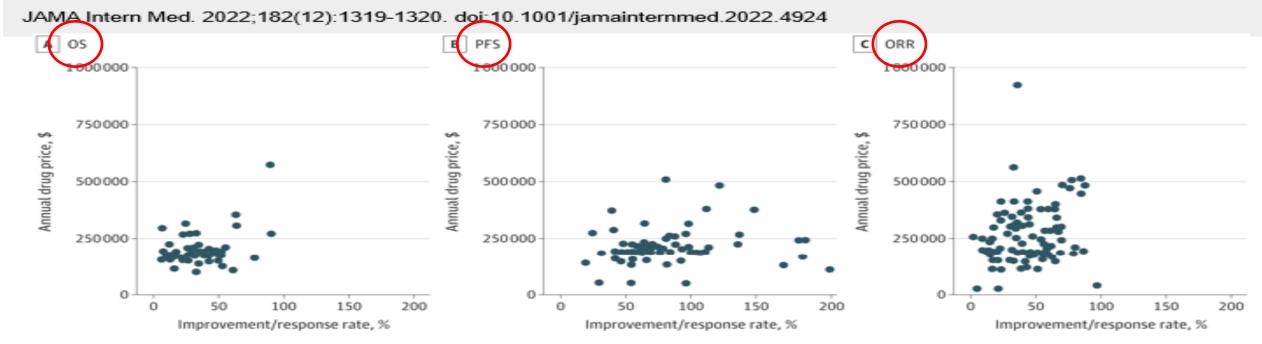

Fig 2. Kinetics of appearance of immune-related adverse event.



DES ENJEUX MULTIPLES†

- Au niveau des hôpitaux, l'augmentation du nombre d'immunothérapies s'accompagne d'un gonflement de la file active des hôpitaux de jour
- Pour les malades, la mise en œuvre des immunothérapies entraîne de nombreux allers-retours entre leur domicile et l'hôpital 2/3/4 fois par mois
- L'assurance maladie de son côté subit de plein fouet l'augmentation du montant de ses dépenses reconnues et remboursées car ces nouvelles molécules coûtent cher et majorent le coût des transports sanitaires.
- La prise en charge à domicile dans le cadre d'une meilleure collaboration ville hôpital permettrait de pallier ces difficultés, elle :
 - Désengorgerait aurait les hôpitaux de jour;
 - Diminuerait le recours aux urgences ;
 - Permettrait aux médecins de ville de sortir de leur isolement face au cancer

PARAMETRES ALTERNATIFS POUR EVALUER LE BENEFICE CLINQUE DES IMMUNOTHERAPIES



AUX USA : UNE ABSENCE DE CORRELATION ENTRE L'EFFICACITÉ ET LE PRIX

From: Association Between US Drug Price and Measures of Efficacy for Oncology Drugs Approved by the US Food and Drug Administration From 2015 to 2020

Figure Legend:

Median Annual Cost by End Point for US Food and Drug Administration Approved Drugs From 2015 to 2020Outliers (n = 7) were excluded from the figure for clarity, and each dot represents 1 approved drug. ORR indicates overall response rate; OS, overall survival; PFS, progression-free survival.

PRIX DES INNUMOTHÉRAPIES : COMPARAISONS USA & UK

Non-small Cell Lung Cancer	Atezolizumab (Tecentriq)	\$219,179	< \$71,429
	Nivolumab (Opdivo)	\$415,950	\$72,379
	Pembrolizumab (Keytruda)	\$236,492	< \$71,429
Ovarian, Fallopian, & Peritoneal	Rucaparib (Rubraca)	\$369,175	> \$42,857
Cancer	Niraparib (Zejula)	\$291,454	\$53,804
	Olaparib (Lynparza)	\$324,100	> \$42,857
Multiple Myeloma	Panobinostat (Farydak)	\$10,230	< \$35,765
	Ixazomib (Ninlaro)	\$433,794	< \$42,857
Acute Lymphoblas- tic Leukemia	Tisagenlecleucel (Kymriah)	\$45,871	> \$42,857 — \$64,286
Lymphoma	Axicabtagene ciloleucel (Yescarta)	\$136,078	> \$71,429
Prostate Cancer	Enzalutamide (Xtandi)	\$84,000	\$80,240

A.Cherla et al./EClinicalMedicine2930(2020)100625

Pensée Profonde N°1

« IL EST TOUJOURS TROP TÔT POUR ÉVALUER, JUSQU'À CE QUE, SOUDAINEMENT, IL SOIT TROP TARD. »

Buxton 1987

Buxton MJ. Problems in the economic appraisal of new health technology: the evaluation of heart transplants in the UK. In: Drummond MF. Economic appraisal of health technology in the European Community. Oxford Medical Publications, 1987:103-18

UN QUESTIONNEMENT SIMPLE

- Quelle Quantité d'effet thérapeutique ?
- Quels besoins de financement?
- Quel est l'effort socialement acceptable?

EST-CE QUE « ÇA » VAUT LE COÛT?

Le Ratio Coût-Efficacité différentiel : Le Critère de Jugement des Économistes

$$\frac{\Delta C}{\Delta E} = \frac{\Delta Ct \pm \Delta Cct \pm \Delta Ccm}{\Delta E}$$

C : Coût médical total par patient traité

E : Efficacité totale

Ct : Coût du traitement

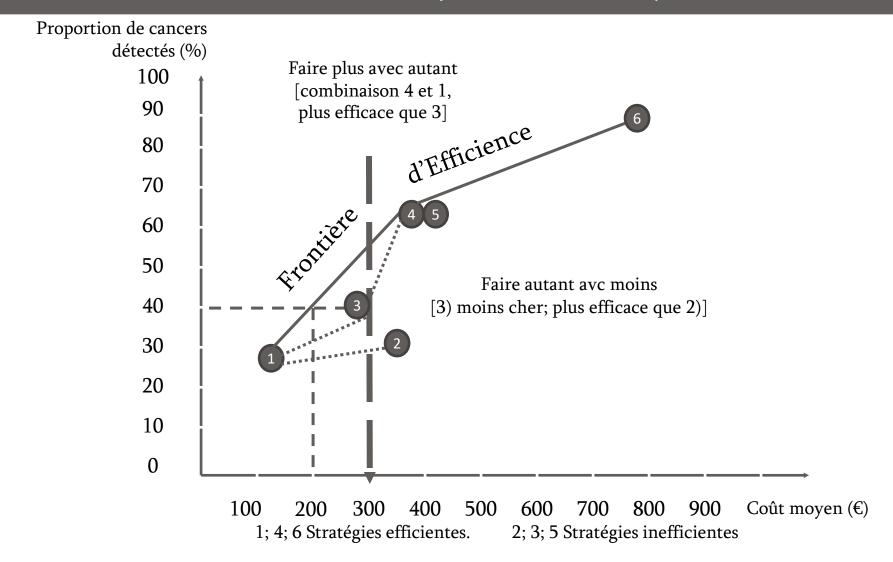
Cct : Coût des complications liées au traitement

Ccm : Coût des complications liées à la maladie

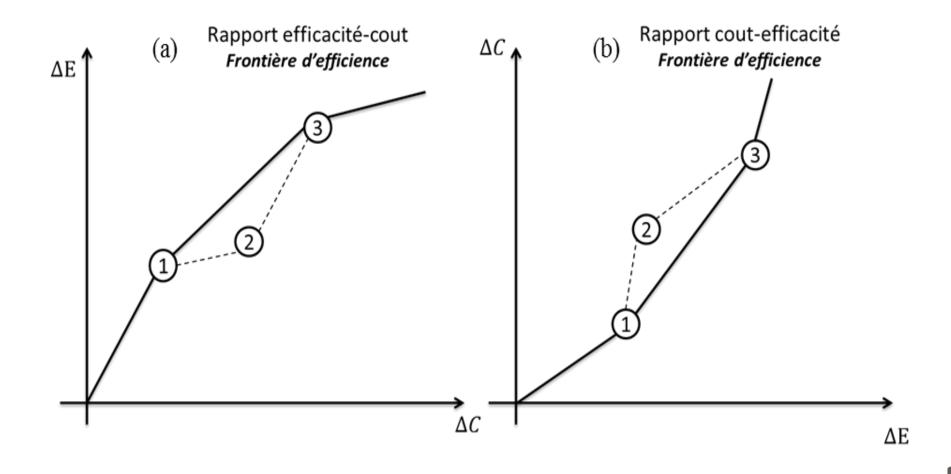
Δ : Différence de coût et d'efficacité

EFFICIENCE, DE QUOI PARLE-T-ON?

Efficience productive:

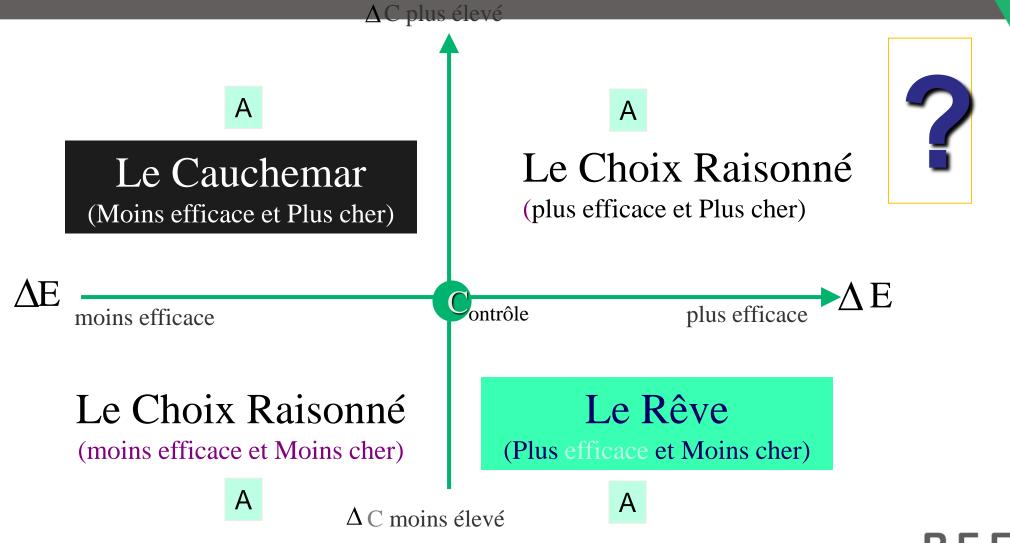

- Faire plus avec autant d'argent,
- faire autant avec moins

(Définition en valeur et non pas en volume)

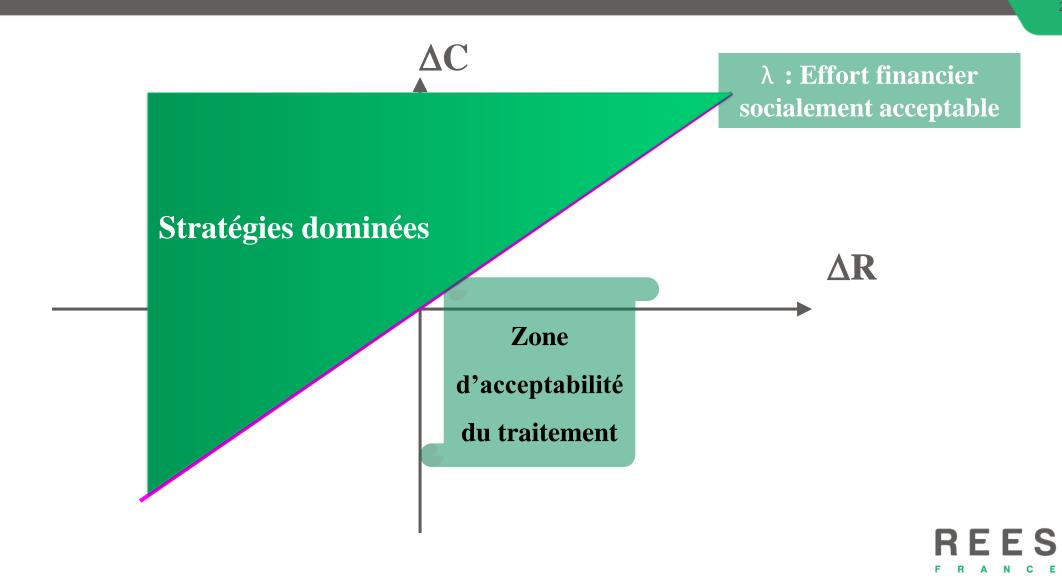


« GAGNER EN EFFICIENCE CE N'EST PAS

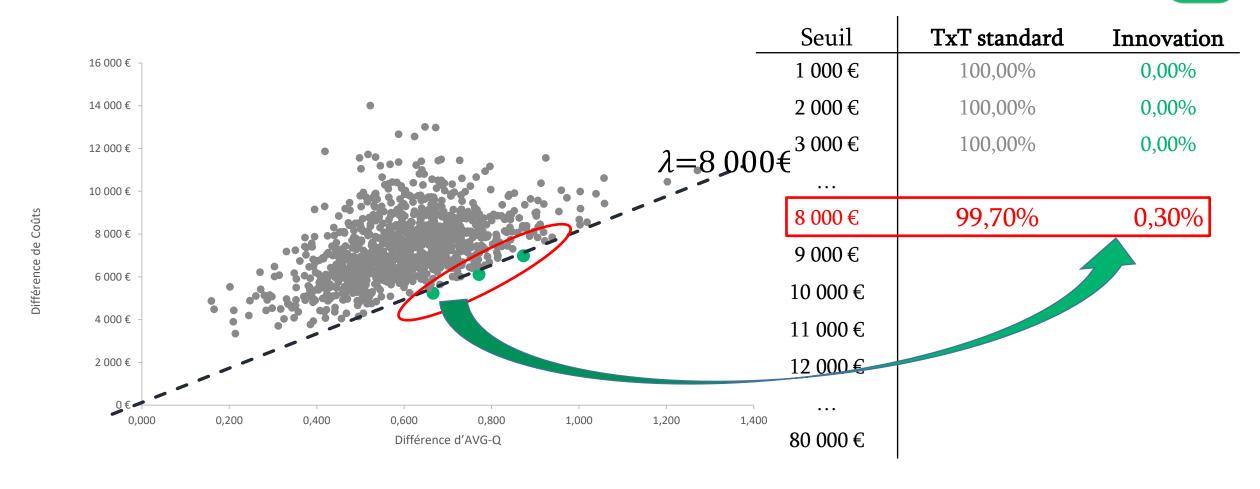
PERDRE SON ÂME » Roselyne Bachelot-Narquin CNOM 22 octobre 2008



FRONTIÈRE D'EFFICIENCE : DEUX REPRESENTATIONS ALTERNATIVES POSSIBLES



EN AVOIR OU NON POUR SON ARGENT : OÙ EST A?

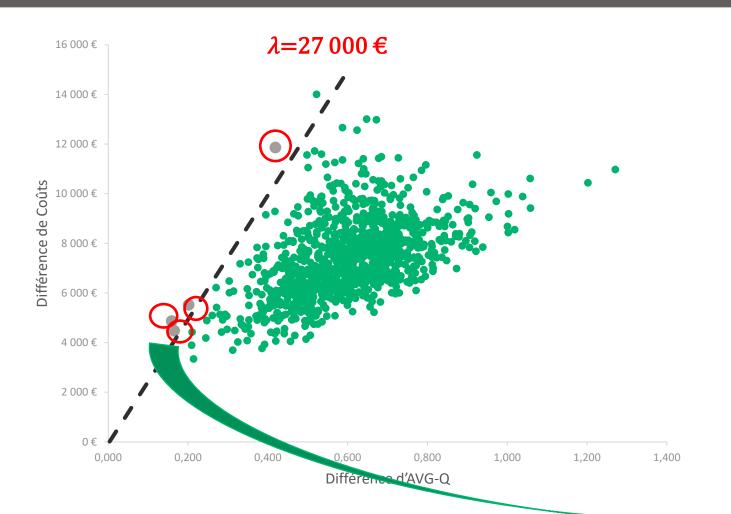

COMBIEN LES BIENS PORTANTS SONT-ILS PRÊTS À PAYER ?

SIMULATION PARAMÈTRIQUE D'UN MONTE CARLO D'ORDRE 2

- La technique du Monte Carlo est opérationnalisée en quatre étapes :
- 1. Tirage aléatoire à partir des distributions de probabilité d'une valeur pour chaque paramètre caractéristique du groupe innovation et calcul du coût total et de l'efficacité totale
- Tirage aléatoire à partir des distributions de probabilité d'une valeur pour chaque paramètre caractéristique du groupe TxT standard et calcul du coût total et de l'efficacité totale correspondantes
- 3. Calcul par différence du ratio différentiel coût résultat correspondant
- 4. Répétition de l'opération B fois pour obtenir une estimation de la distribution du RDCR dans le plan coût résultat → Nuage de points

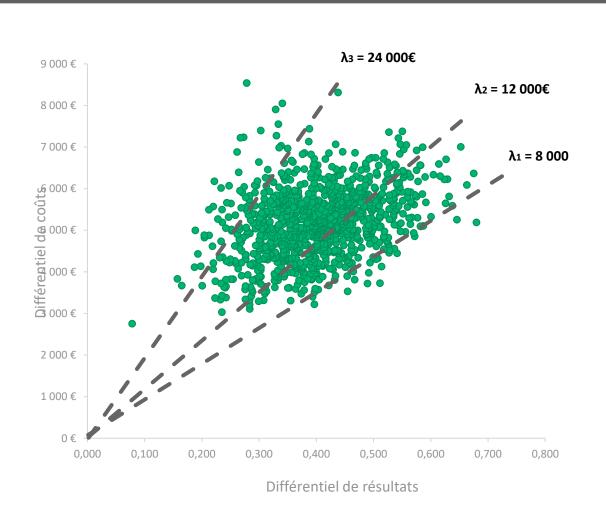
COURBE D'ACCEPTABILITÉ DES RATIO RDCR EN FONCTION DE L'EFFORT FINANCIER SOCIALEMENT ACCEPTABLE

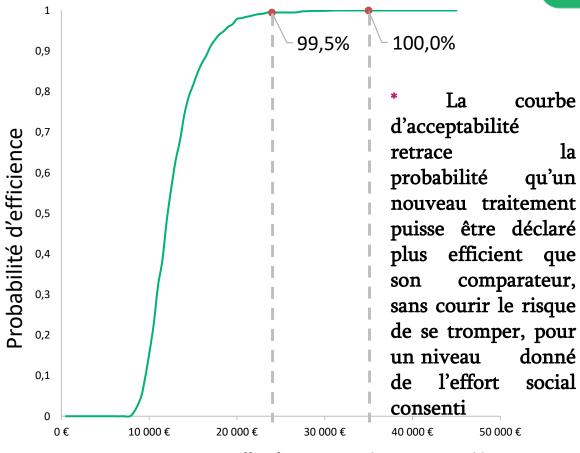
COURBE D'ACCEPTABILITÉ


PROPORTIONS DE CAS GAGNANTS

COURBE D'ACCEPTABILITÉ

PROPORTIONS DE CAS GAGNANTS




EFSA	TxT standard	Innovation
1 000 €	100,00%	0,00%
2 000 €	100,00%	0,00%
3 000 €	100,00%	0,00%
•••		
9 000 €	95,70%	4,30%
10 000 €	84,60%	15,40%
11 000 €	67,90%	32,10%
12 000 €	51,70%	48,30%
•••		
27 000€	0,40%	99,60%

VALEUR DE λ ET COURBE D'ACCEPTABILITÉ

LA SANTÉ GAGNÉE EXCÈDE-T-ELLE LA SANTÉ PERDUE QUELLE SONT LES CONSÉQUENCES EXTRA MÉDICALES DE L'INNOVATION?

LE BÉNÉFICE DE SANTE NET INCRÉMENTAL [BSNI] est égal

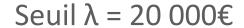
- aux gains de santé qu'entraine l'innovation pour la population (ΔE) par rapport à son comparateur
- moins les pertes de santé ($\Delta C/\lambda$) qu'elle induit en mobilisant des ressources au détriment d'autres priorités sanitaires.[autrement dit quel est l'impact sanitaire pour la population càd l'intérêt supplémentaire pour la santé publique : ISSP]

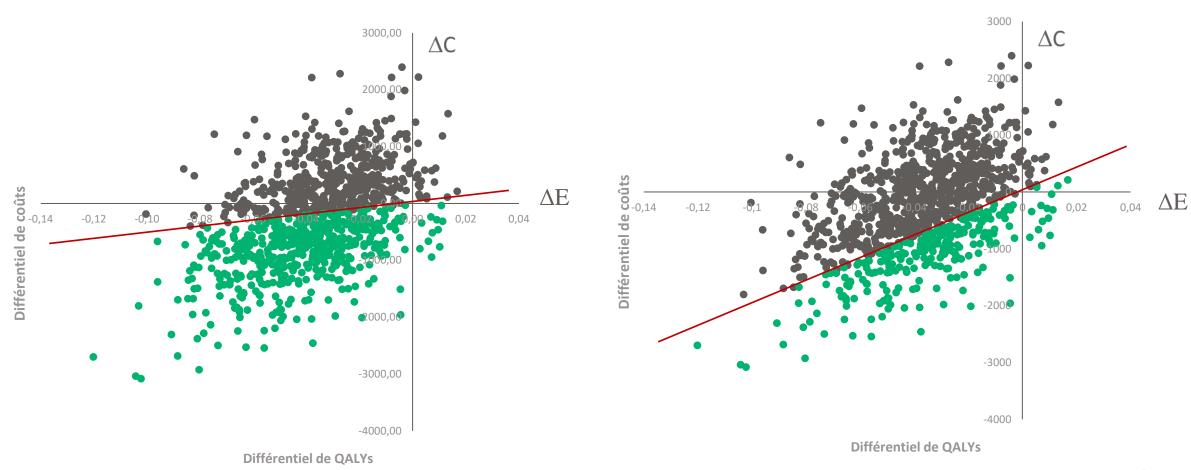
BSNI = $\Delta E - \Delta C / \lambda$ (ex: $\Delta C / \lambda$ =100 000/20 000 →5Qalys perdus [pour une valeur de λ =20000 €]

LE BÉNÉFICE MONÉTAIRE NET INCRÉMENTAL [BMNI] est égal

- au surcroit d'efficacité (ΔE), de l'innovation par rapport à son comparateur, valorisé sur la base d'un niveau donné de l'effort financier socialement acceptable (λ)
- déduction faite des dépenses additionnelles qu'il faut engager pour l''obtenir (ΔC) [Autrement dit la valeur du service supplémentaire rendu à la collectivité VSeRC ou VISSP]

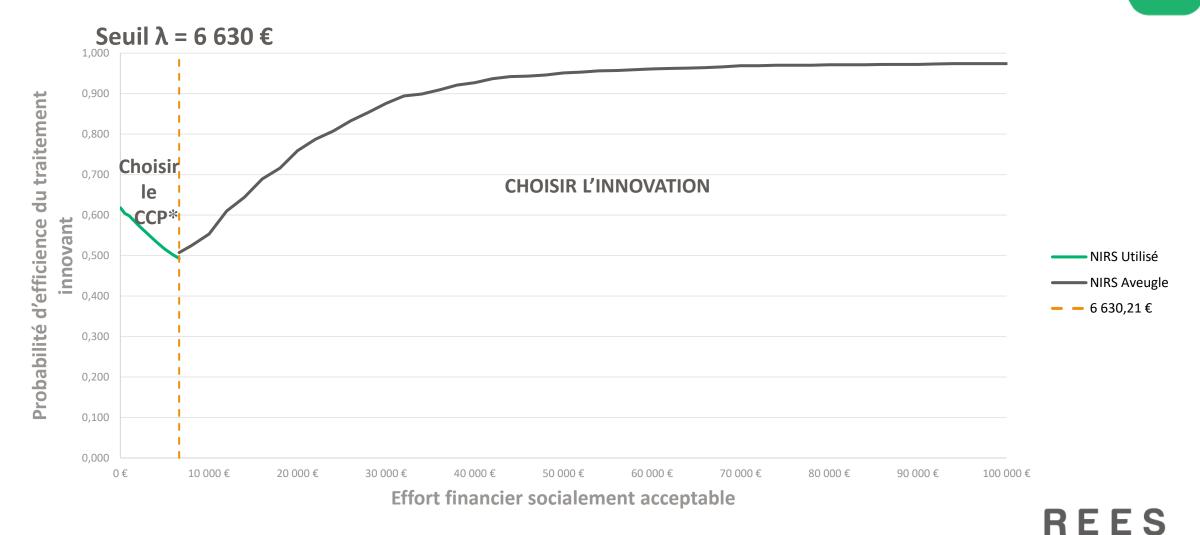
BMNI =
$$\lambda * \Delta E - \Delta C$$

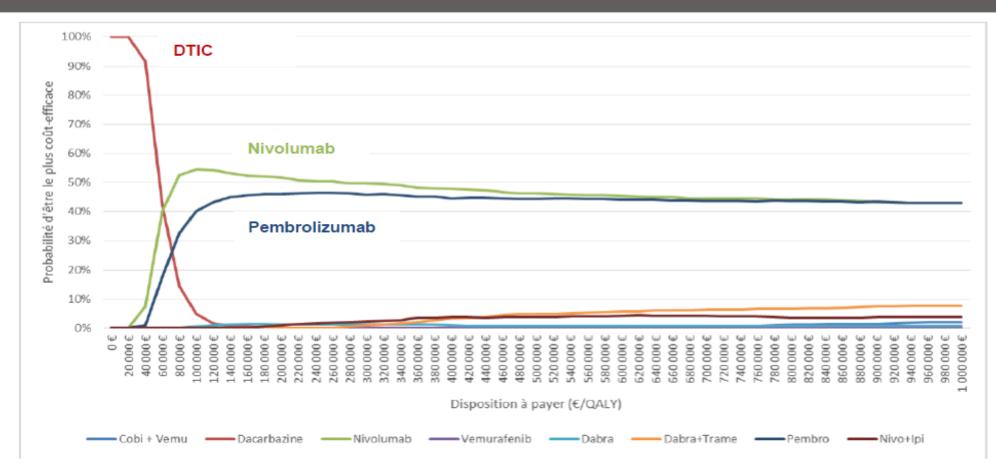



CALCUL POUR UNE VALEUR DE **\lambda** =32 000€

	TxT STA	ANDARD	IINNOVATION BMNI		Probabilité qu'un des deux traitements soit supérieur à l'autre en valeur du service rendu à la collectivité				
Simulation	QALY	Coût	QALY	Coût	Standard	Innovation	TxT STANDARD	INNOVATION	Traitement optimal
1	0,28	9078	0,31	9124	-86,07	885,11	0	1	Innovation
2	0,27	9062	0,33	10937	-444,07	-329,90	0	1	Innovation
3	0,24	8453	0,30	9378	-768,57	283,27	0	1	Innovation
4	0,28	9171	0,31	8155	-77,14	1624,85	0	1	Innovation
5	0,25	8412	0,29	9293	-354,28	-103,63	0	1	Innovation
6	0,29	10325	0,29	8101	-985,37	1168,89	0	1	Innovation
7	0,29	9644	0,31	8565	-486,19	1313,98	0	1	Innovation
8	0,28	9181	0,28	9419	-66,53	-526,37	1	0	Standard
9	0,28	8842	0,29	8455	29,42	876,23	0	1	innovation
10	0,25	8775	0,33	9903	-711,93	736,48	0	1	Innovation
 * 1 = oui, 0 = 1000	 = noŋ _{,2} g rog	 ramm ുട്യാ ന REI	 ES-Frange so	 us VB ∮ 276	 -93,05	 490,96	 O	 1	Innova REE
Moyenne	0,27	8995,06	0,31	9236,84	-343,89	581,24	P = 0,106	P = 0,894	INNOVATION A N

VARIANTES SUR LE NIVEAU D'EFFORT FINANCIER SOCIALEMENT ACCEPTABLE




FRONTIÈRE D'ACCEPTABILITÉ DES TRAITEMENTS A UTILISER EN 1^{ERE} INTENTION SELON LA VALEUR DE **\(\lambda\)**

^{*} Comparatif cliniquement pertinent

FRONTIERE D'ACCEPTABILITÉ MULTI-OPTIONS

COTELLIC® + ZELBORAF ® : PATIENTS ATTEINTS D'UN MÉLAMOME AVANCÉ NON RESÉCABLE porteur d'une mutation BRAF600 L1

Source : Dossier de l'industriel révisé post-échange technique

<u>Lecture</u>: Chaque courbe représente le pourcentage des simulations pour lesquelles la stratégie a permis de produire le bénéfice net le plus important, parmi l'ensemble des stratégies, pour une disposition à payer (en € par QALY) donnée. Par exemple, dans ce cas on constate que la stratégie dacarbazine (DTIC) maximise le bénéfice net dans 90% des cas pour une disposition à payer de 40 000€ par QALY. On dit que pour une disposition à payer de 40 000€ par QALY, il y a 90% de chance que DTIC maximise le bénéfice net.

LA VALEUR DE L'INNOVATION DÉPEND DE L'ARGENT QU'ON VEUX BIEN Y METTRE

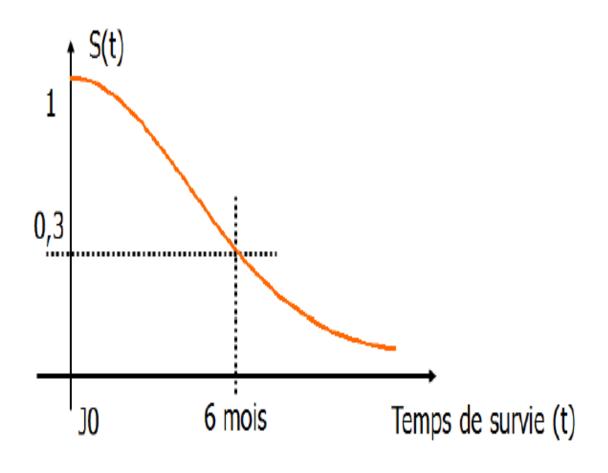
RÉFÉRENCES RECOMMANDÉES PAR L'OMS

- Pour l'OMS, la valeur du seuil pourrait être fixée en proportion du produit intérieur brut par habitant. Un traitement dont le ratio surcoût/ surcroît d'efficacité par rapport à son comparateur est
 - inférieur ou égal à une fois la production par habitant sera considérée comme très efficient.
 - On le jugera efficient lorsque sa valeur est comprise entre une fois et trois fois la valeur du PIB par habitant et
 - il sera dit inefficient lorsque sa valeur est supérieure à trois fois celle du PIB par habitant
- La valeur du seuil varie donc en fonction de la richesse des pays où les analyses coûtefficacité sont conduites : 132 872 \$ [2022 FMI] pour Le Luxembourg, 80 034 \$ [2022 FMI] pour les Etats-Unis,51 383 pour l'Allemagne, 44 730 \$ la France .
- Le corridor acceptable d'efficience s'établirait aujourd'hui en France entre 36 897€ et 110 691 €_[2021 insee base 2010]

VALEURS DE RÉFÉRENCE INTERNATIONNALES

Country	Authors	ICER threshold	
Explicit ICER thre	shold range		
UK	NICE [2004]	£20 000 - £30 000 per QALY	
Implicit ICER thre	shold values or ranges based on p	ast allocation decisions	
Australia	Henry et al. and the PBAC [2005]	AU\$69 900 per QALY	
New Zealand	Pritchard et al. and [2007] PHARMAC	NZ\$20 000 per QALY	
Canada	Rocchi et al. and the [2008] CDR	Range of acceptance: dominant to CAN\$80 00 per QALY Range of rejection: CAN\$31 000 to CAN\$137 000 per QALY	
ICEK threshold va	liues or ranges proposed by individ	uals or institutions	
USA	Weinstein [1993]	\$50 000 per QALY	
USA	Braithwaite et al.	\$109 000 - \$297 000 per QALY	
The	The Council for Public [2006	€80 000 per QALY	
Netherlands	Health and Health Care	3 2	
Canada	Laupacis et al. [2002]	CAN\$20 000 to CAN\$100 000 per QALY	
No ICER threshol	d values or ranges identified		
Finland, Sweden,	, Norway, Denmark		
CDP: Commor	Drug Paview: NICE: Nation	al Institute for Health and Clinical Excellence:	

CDR: Common Drug Review; NICE: National Institute for Health and Clinical Excellence; PBAC: Pharmaceutical Benefits Advisory Committee; PHARMAC: Pharmaceutical Management Agency.



LES PARTICULARITÉS DE L'ÉVALUATION MÉDICO-ÉCONOMIQUE

- Les essais contrôlés randomisés qui étudient l'efficacité des nouveaux traitements dans le cancer adoptent comme critère de jugement principal la médiane de survie pour 2 raisons :
 - Le caractère asymétrique des données risquerait de donner une importance excessive dans le calcul des moyennes, aux patients présentant des valeurs atypiques élevées;
 - Un raisonnement en moyenne de survie est impossible puisqu'il supposerait que l'on puisse suivre tous les patients inclus jusqu'à la date de leur décès.
- Les agences qui procèdent à l'évaluation médico-économique des produits de santé, demandent que les dossiers qui leur sont adressés, étudient le retentissement des traitements « vie entière » et elles exigent que les QALY's (années de vie ajustées sur la qualité de vie) soit utilisé comme critère de jugement:
- Deux conditions qui imposent de s'intéresser au mimimun à l'ensemble des pts qui ont été suivi jusqu'à la date de point et pas seulement qu'à la médiane et que les données des essais randomisés soient extrapolées au-delà de leur terme. Ce qui ne peut être obtenu, qu'en ayant recours à des modèles statistiques paramétriques.

FONCTION DE SURVIE

- La fonction de survie S(t) est une fonction du temps qui quantifie la proportion estimée d'individus dans l'échantillon qui n'ont pas présenté l'événement à cet instant t depuis JO.
- la proportion estimée d'individus dans l'échantillon qui ont présenté l'événement à cet instant depuis J0 vaut 1 – S(t).
- il est recommandé d'interpréter la valeur de 1 − S(t) la proportion estimée d'individus ayant présenté l'événement dans les t premier intervalles de temps après J0) y compris à l'instant t₁ plutôt que S(t)
- la fonction S(t) démarre à 1 et se termine à 0. Elle est strictement monotone et ne peut que décroître au cours du temps

MÉTHODES NON PARAMÉTRIQUES D'ESTIMATION DE S(T)

- Les méthodes les plus souvent utilisées pour analyser les données du temps jusqu'à l'événement :
 - 1. Kaplan-Meier + Test de Log-Rank / Wilcoxon : produit une estimation empirique de la distribution du temps jusqu'à l'événement et compare les groupes
 - 2. Régression de Cox (risque proportionnel) : Mesure l'effet de plusieurs covariables sans modéliser la distribution sous-jacente, en supposant des risques proportionnels entre les niveaux de la variable dépendante
- Aucune de ces méthodes ne fait d'hypothèse quant à la forme de la courbe sous jacente de S(t)

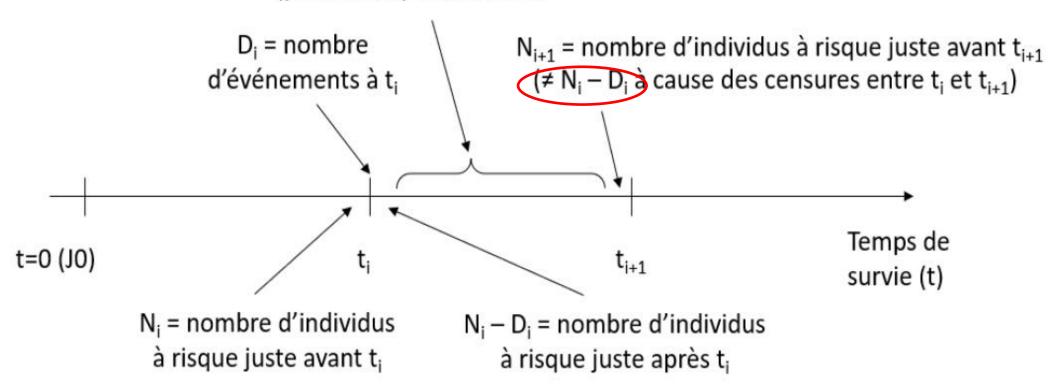
ESTIMATION DE S(T) PAR LA MÉTHODE DE KAPLAN-MEIER

- La méthode de Kaplan-Meier (KM) est utilisée pour estimer à partir des données individuelles patients (DIP)
 documenté dans un ERC.
- La méthode résume les DIP sous la forme d'une série d'intervalles de temps **finissant** à l'instant où un évènement se produit: $]0, t_1],]t_1, t_2], ...] t_{i-1}, t_i]$. Pour chaque intervalle de temps i = 1, 2, ..., j, la probabilité conditionnelle d'un intervalle s'écrit $S_C(t_i)$.

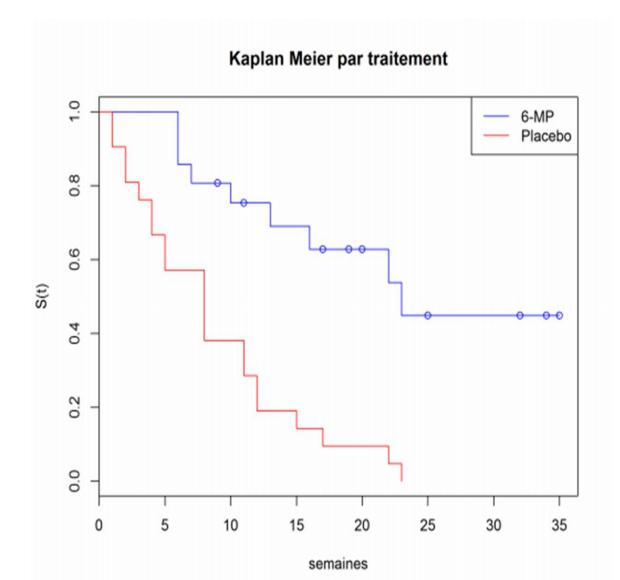
$$S_C(t_i) == \frac{N_i - D_i}{N_i};$$

elle mesure la proportion des patients initialement inclus (S) qui survivent à un temps donné (t_i) conditionnellement au fait qu'ils ont survécu avant ce temps, y compris le sujet qui a présenté l'événement juste à cet instant.

lorsque les bornes de chaque intervalle sont inversées ,la méthode résume les DIP sous la forme d'une série d'intervalles de temps commençant à l'instant ou l'événement se produit [0, t₁[, [t₁,t₂[,..., [t, ∞[.La probabilité globale cumulée notée S^{KM}(ti) est alors égale au produit des probabilités passées


$$S^{KM}(t_i) = \prod_{i=1}^{j} \frac{N_i - D_i}{N} = S^{KM}(t_{i-1}) * \frac{N_i - D_i}{N_i}$$

- t_i -le temps de survenue de l'événement
- $N_{\rm i}$ -le nombre de patients à risque avant la survenue de l'événnement
- D_i l'événement(s) survenant avant le temps t_i , celui de cet instant étant cette fois exclu;
- N_{i+1} le nombre de survivants exposés au risque de survenue de l'événement juste avant l'instant t_{i+1}


ESTIMATION DU NOMBRE D'INDIVIDUS A RISQUE DANS UN INTERVALLE

Aucun événement, mais présence (potentielle) de censures

REPRESENTATION GRAPHIQUE DE KM

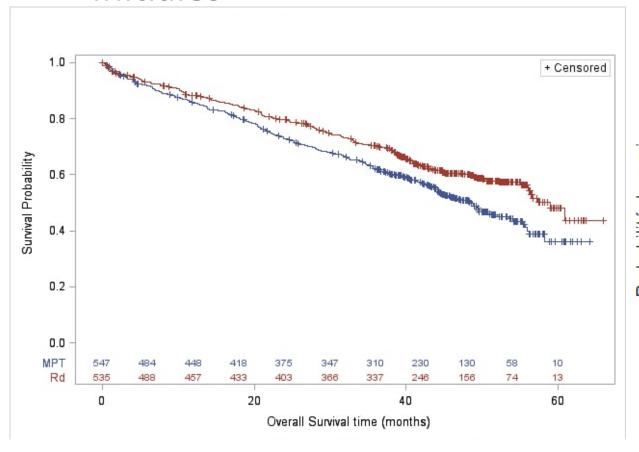
- L'axe horizontal renseigne sur l'unité de temps qui a été adoptée pour le suivi de la survenue des événements
- L'axe vertical représente la proportion des individus qui n'ont pas présenté l'événement
- Les sauts de marche correspondent à la survenue des événements
- les marches reflètent la constance de la fonction S(t) entre la survenue de 2 évènements
- Les censures sont représentées par des ronds ou des losanges ; elles diminuent n_i mais ne font pas baisser la courbe de KM. $\mathbf{R} \ \mathbf{E} \ \mathbf{E} \ \mathbf{S}$

LOGICIELS DE NUMÉRISATION DES COURBES DE SURVIE NON PARAMÉTRIQUES PUBLIÉES

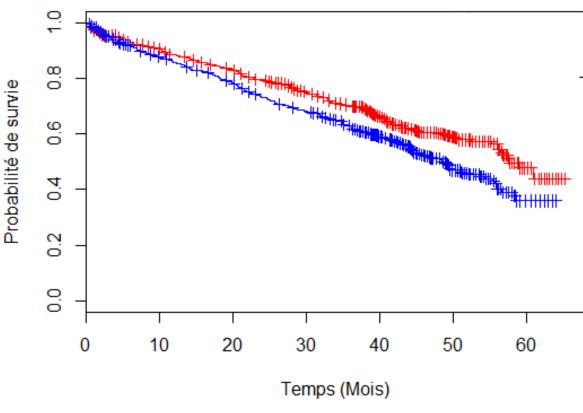
PLATEFORM 🕏	COST \$	AUTOMATIC DETECTION	FILES SUPPORTED	POST AQUISITION ANALYSIS	YEAR \$
Windows	\$49.95	yes	~ all image formats	no	2012
Windows, MacOS, Unix	\$25	no	JPG, PNG, GIF	no	2006
Windows	\$423	yes	~ all image formats	yes	2015
Windows, MacOS, Unix	\$49	yes	~ all image formats	no	2014
Windows, MacOS, Unix	Free	yes	~ all image formats	no	2015
Windows	Free	no	~ all image formats	no	2011
Windows	Free	yes	~ all image formats	no	2013
MacOS	Free	yes	~ all image formats	no	2014
Windows, Linux	Free	yes	~ all image formats	no	2015
	Windows Windows, MacOS, Unix Windows, MacOS, Unix Windows, MacOS, Unix Windows Windows Windows Windows Windows	Windows, MacOS, Unix Windows \$423 Windows, MacOS, Unix Windows, MacOS, Unix Free Windows Free MacOS Free Windows, Free Windows Free	PLATEFORM COST DETECTION Windows \$49.95 yes Windows, MacOS, S25 no Unix Windows, MacOS, S49 yes Windows, MacOS, Free yes Unix Windows Free no Windows Free yes MacOS Free yes Windows, Free yes Windows, Free yes	PLATEFORM ♣ COST ♣ DETECTION SUPPORTED Windows \$49.95 yes ~ all image formats Windows, MacOS, Unix \$25 no JPG, PNG, GIF Windows \$423 yes ~ all image formats Windows, MacOS, Unix \$49 yes ~ all image formats Windows, MacOS, Unix Free yes ~ all image formats Windows Free yes ~ all image formats Windows Free yes ~ all image formats Windows, Free yes ~ all image formats Windows, Free yes ~ all image formats	PLATEFORM & COST & AUTOMATIC DETECTION SUPPORTED ANALYSIS Windows \$49.95 yes ~ all image formats no Windows, MacOS, Unix

Tous les logiciels suivent un processus similaire pour convertir histogrammes, diagrammes de dispersion, et tracés linéaires en séries de chiffres

- 1. Accéder au graphique
- 2. Définir les axes
- 3. Numériser les points des données
- 4. Exporter les données



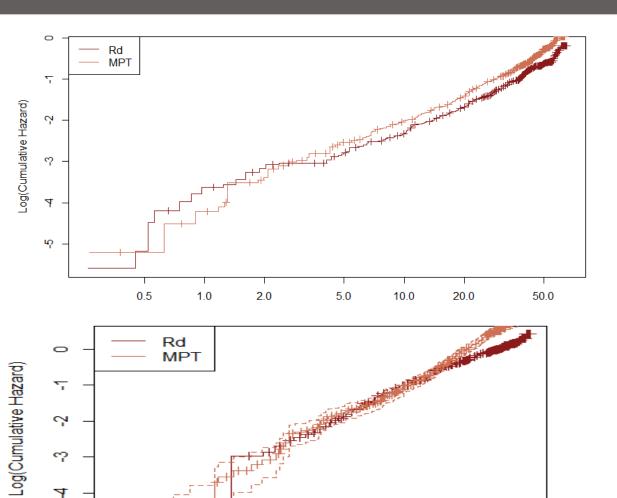
DENOMBREMENT DES POINTS APPARTENANT AUX INTERVALLES DE DATES DE RELEVÉ PUBLIÉES


ange coordonnées	Temps (jours)	Proportion de survie					
K	Tk	Sk		Tomas	Borne	Borne	# notionts
(1)———	0,340081	1	Intervalle	Temps (jours)	inférieure	supérieure	# patients : risque
2	1,36032	1					
3	2,38057	1	1	0	1	48	140
4	3,40081	0,996528	2	28	→ 49	82	126
•••	***		3	56	83	105	120
48	27,2065	0,909722	4	84	106	141	112
49	28,2267	0,909722				/	
50	29,247	0,909722	5	140	142	152	98
51	30,6073	0,909722	6	168	153	155	46
***	***						
82	55,0931	0,868056					
83	56,1134	0,868056					
84	57,1336	0,868056					
104	81,2794	0,833333	1,0	1	/	•	
105	83,3198	0,833333				•••	Rifaximine - a
	84,6802	0,833333	0,8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		^	W 600s
107	86,3806	0,833333	SE .				
108	88,081	0,833333	9,0 19				Placebo
			-8 ≤ 0,4				
141	138,753	0,777778	of C				
4 2	140,794	0,777778	<u>e</u> 0,2				
143	143,174	0,777778	- 0,2	/	,		
	****		0,00				
152	167,32	0,777778	0,000	28	56 84	112 1	40 168
(53)	169,02	0,777778		/	Jours		
154	170,381	0,777778	140	126	120 112		98 46
	170,721	0,777778	158	[220]	113 98		84 38

DONNÉES INDIVIDUELLES RECONSTITUÉES À PARTIR DES COURBES DE KAPLAN-MEIER PUBLIÉES

Initiales

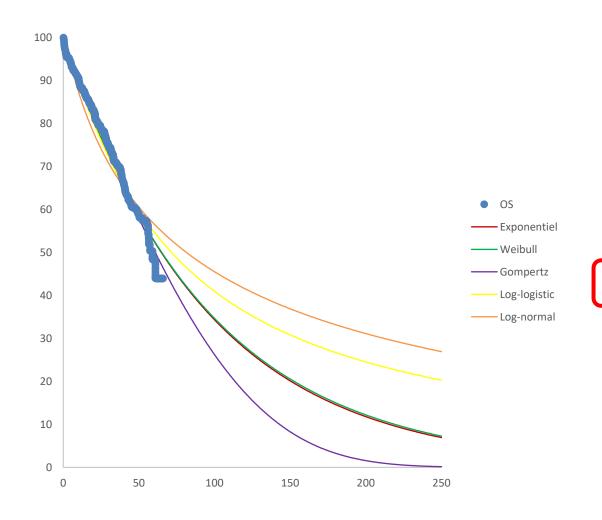
Reconstituées


AJUSTEMENTS PARAMÉTRIQUES AUX DONNÉES RECONSTITUÉES

- Modèles paramétriques standard:
 - Exponentiel
 - Weibull
 - Gompertz
 - Log-normal
 - Log-logistique
- Modèles paramétriques flexibles peuvent être nécessaires (poly-Weibull model, spline-based modèle paramétrique, generalized gamma, generalized F model, etc.)

MODÈLE À RISQUE PROPORTIONNEL VS MODÈLE À RISQUE ACCÉLÉRÉ

50.0

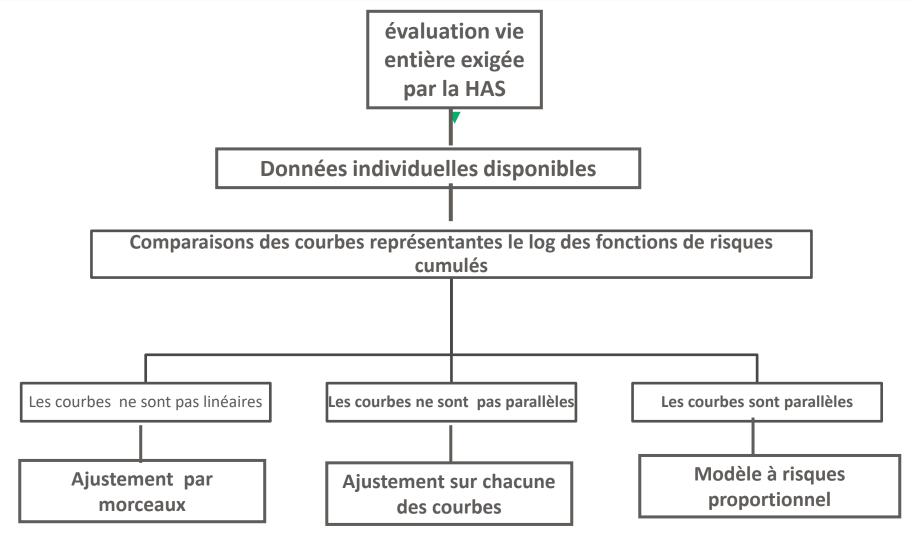

Temps(mois)

- Courbes représentant les Log des fonctions de risque cumulés des courbes KM sont parallèles :
 - Proportionnalité des risques pour les deux traitements
 - Choix d'une seule forme fonctionnelle et estimation dérivée de la courbe pour deuxième traitement

Courbes ne sont pas parallèles :

- Rejet de l'hypothèse de risque proportionnel; les risques entre les traitements ne sont pas proportionnels
- Ajustement des courbes de survie doit se faire séparément pour les deux traitements F F

AJUSTEMENT PARAMÉTRIQUE D'UNE COURBE DE SURVIE NON PARAMÉTRIQUE



Loi de distribution	AIC	Log- Vraisemblance	Nb paramètres
Exponentiel	2305,79	-1151,89	1
Weibull	2307,76	-1151,88	2
Gompertz	2308,22	-1152,61	2
Log-Normale	2335,83	-1165,92	2
Log-Logistique	2316,53	-1156,26	2
Gamma	2307,57	-1151,78	2

$$AIC = 2k - 2\ln(L)$$

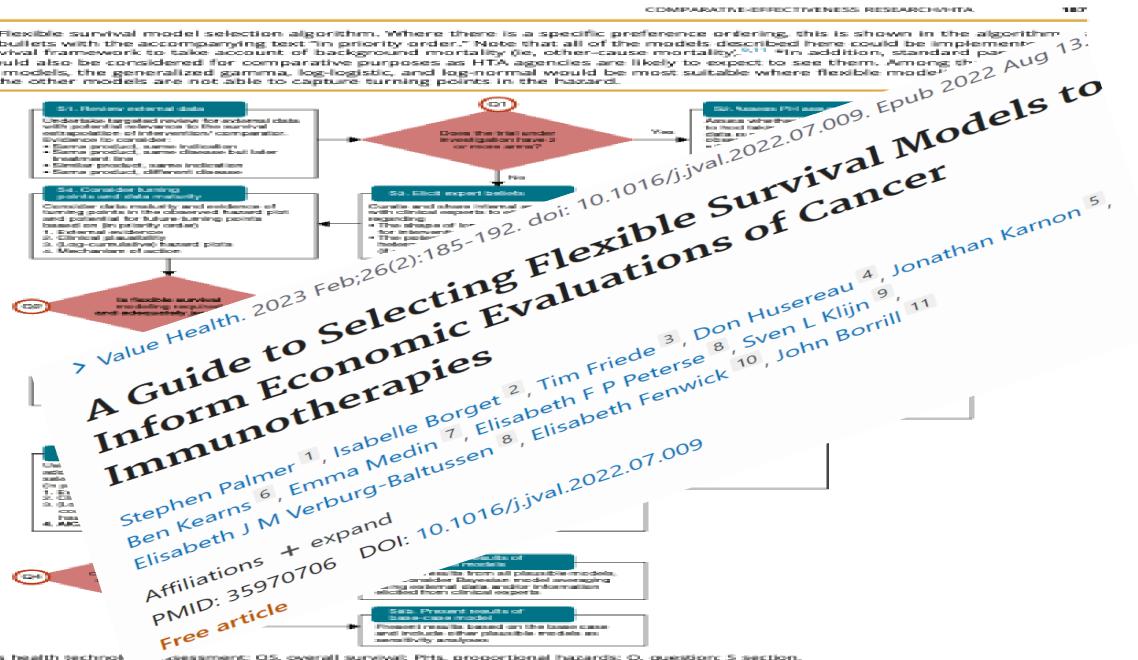
ALGORITHME DE SÉLECTION DU MODÈLE DE SURVIE

VERIFICATION DE LA ROBUSTESSE DES EXTRAPOLATIONS

Comparaison Graphique

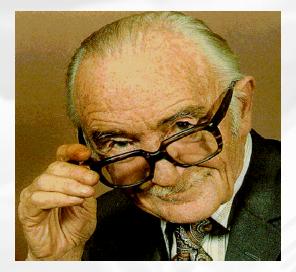
Inspection visuelle

Tests Statistiques


- Critère d'information d'Akaike (AIC)
- Critère d'information bayésien (BIC)
- Log-vraisemblance (log(L))
- Log-cumulative hazard plot
- Résidus marginales

Validité Clinique

Evaluation de la pertinence clinique de la partie extrapolée de la courbe de survie


Figure 1. Flexible survival model selection algorithm. Where there is a specific preference ordering, this is shown in the algorithm. numbered bullets with the accompanying text "in priority order." Note that all of the models described here could be implementrelative survival framework to take account of background mortality (ie, other-cause mortality, 6.11 *In addition, standard parmodels should also be considered for comparative purposes as HTA agencies are likely to expect to see them. Among the parametric models, the generalized gamma, log-logistic, and log-normal would be most suitable where flexible mode¹ given that the other models are not able to capture turning points in the hazard.

HTA indicates health technoli

∠sessment; OS, overall survival; PHs, proportional hazards; Q, question; S section.

CONCLUSION

Archibald C

Exiger des moyens sur la base de données épidémiologiques ou de faits scientifiquement démontrés est indispensable mais ne suffit plus. Les conséquences médico-économiques de la décision sont désormais à prendre impérativement en compte

